ESTUDIO SECTORIAL:
BOMBAS UTILIZADAS
EN LA INDUSTRIA
PETROLERA
El presente Estudio Sectorial: Bombas utilizadas por la Industria Petrolera se elaboró para la Cámara Nacional de la Industria de Transformación (CANACINTRA) y el Fideicomiso para Promover el Desarrollo de Proveedores y Contratistas Nacionales para la Industria Petrolera Estatal (FISO).
CONTENIDO

PRESENTACIÓN ... 6
INTRODUCCIÓN .. 7
ANTECEDENTES ... 8
OBJETIVO ... 10
ALCANCE ... 11
PROCEDIMIENTOS DE CONTRATACIÓN 17
COMERCIO EXTERIOR DE BOMBAS 19
DEMANDA AGREGADA DE BOMBAS 20
 - Demanda por Clasificación General ... 20
 - Demanda por Tipo de Bomba .. 24
 - Demanda por Tipo y Material .. 33
OFERTA NACIONAL AGREGADA 41
 - Información General ... 41
 - Infraestructura y Procesos ... 47
 - Estrategia Empresarial ... 54
 - Financiamiento ... 61
 - Resumen Agregado Oferta Nacional ... 64
OFERTA NACIONAL POR TIPO Y MATERIAL 69
 - Descripción General de la Oferta ... 69
ANÁLISIS DE BRECHA POR TIPO Y MATERIAL 72
 - Análisis de Brecha ... 72
IDENTIFICACIÓN DE RETOS Y OPORTUNIDADES 112
 - Matriz de Bombas con Oferta Nacional 112
 - Resumen de Bombas con Oferta Nacional 123
 - Matriz por Bombas sin Oferta Nacional 125
ESTRATEGIAS Y LÍNEAS DE ACCIÓN 133
 - Estrategias Generales ... 133
 - Estrategias y Líneas de Acción por tipo de Bomba 134
CONCLUSIONES ... 143
PRESENTACIÓN

A nivel internacional, las compras del sector público constituyen un importante detonador de la actividad económica. En este sentido, el gobierno es uno de los principales demandantes de bienes, servicios, y arrendamientos, con un efecto transversal en los diferentes sectores de la actividad económica.

En nuestro país, el sector petrolero es uno de los pilares fundamentales de la actividad económica, debido al impacto que genera en los ingresos del gobierno, y al efecto multiplicador en la economía nacional. No obstante, que existen avances significativos en términos de integración de un sistema de compras gubernamentales, y una mayor difusión de oportunidades de negocios, persisten áreas que dificultan la participación de los sectores industriales en la proveeduría nacional.

En consecuencia, el presente estudio denominado "Estudio sectorial: Bombas utilizadas por la industria petrolera", se dirige a identificar las capacidades de la industria de bombas especializadas en el sector petrolero, alineadas con la demanda potencial de Petróleos Mexicanos, a fin de proponer una serie de estrategias que incidan en el fortalecimiento de las capacidades de la industria nacional.

La Cámara Nacional de la Industria de Transformación (CANACINTRA), a través del Sector de Bienes de Capital, contribuyó activamente en esta iniciativa, con la finalidad de impulsar políticas dirigidas a fortalecer la participación de las empresas mexicanas en los procedimientos de contratación pública, incrementado el grado de integración nacional en sus productos.

Es importante resaltar, que las modificaciones a las leyes del sector petrolero en nuestro país, necesariamente deberán incidir en oportunidades para las empresas nacionales en los procesos de proveeduría, adquisiciones, y apoyos financieros para el aprovisionamiento y suministro de bienes y/o servicios, entre otras políticas.
INTRODUCCIÓN

La Estrategia de Desarrollo de Proveedores y Contratistas Nacionales de Petróleos Mexicanos, tiene como una de sus iniciativas el desarrollo de estudios sectoriales, enfocados a grupos de empresas que pertenezcan a un sector industrial y que fabriquen bienes con alta demanda para la industria petrolera. Lo anterior con el fin de determinar el grado de integración nacional (GIN) del bien en cuestión, y posteriormente desarrollar estrategias de acción para las empresas del sector, a través de la implementación de proyectos específicos de desarrollo de proveedores y contratistas, lo cual, sirve de herramienta para incrementar el GIN del bien y la competitividad de las industrias con posibilidades de atender la demanda de PEMEX.

Con base en el Modelo de Pronóstico de Demanda de PEMEX, se realizó un análisis y selección de los bienes críticos, considerando variables como su grado de integración nacional, los montos de adquisición, perfiles de la demanda, entre otros; identificándose 40 recursos críticos con un impacto importante para incrementar el GIN en las adquisiciones realizadas por PEMEX.

En 2012, la Gerencia de Desarrollo de Proveedores y Contratistas llevó a cabo los estudios sectoriales para los Bienes de Válvulas de Proceso y Bienes Eléctricos, mismos que representaron un primer avance en el desarrollo de diagnósticos de sectores de bienes específicos para determinar el GIN.

Por consiguiente, las bombas utilizadas por la industria petrolera representan un importante insumo para la operación y mantenimiento de los organismos subsidiarios de PEMEX, así como para la ejecución de nuevos proyectos de inversión. En términos agregados, se estima una demanda de bombas por 7,652 unidades en el período 2014-2018.

En este sentido, el presente “Estudio Sectorial: Bombas Utilizadas por la Industria Petrolera”, representa una iniciativa para desarrollar estrategias que permitan una mayor proveeduría nacional con un alto grado de integración nacional mediante el diagnóstico del sector.
ANTECEDENTES

La reforma de la Ley de Petróleos Mexicanos, promulgada el 28 de Noviembre de 2008, en su artículo transitorio decimotercero plantea que... Petróleos Mexicanos y sus organismos subsidiarios establecerán una estrategia para apoyar el desarrollo de proveedores y contratistas nacionales. Y en específico, la estrategia tendrá como finalidad incrementar mínimo 25% del contenido nacional de sus contrataciones en un plazo de 10 años. Con base en los montos de contratación de PEMEX, la meta de 25% de contenido nacional se traduce en incorporar al año aproximadamente 2,000 millones de pesos de manera sostenida.

El ordenamiento de incrementar el contenido nacional en un mínimo de 25%, constituye una oportunidad única para establecer una política efectiva de desarrollo de proveedores y contratistas, que permita incrementar las compras nacionales en diferentes escenarios de tiempo.

En el corto plazo, aumentar el componente nacional de las adquisiciones bajo el marco legal vigente, con medidas como la eliminación de cuellos de botella, de procedimientos administrativos; y el mejor cumplimiento de los márgenes que establecen los tratados de comercio internacional.

En consecuencia, se suscribió el contrato de constitución del Fideicomiso para Promover el Desarrollo de Proveedores y Contratistas Nacionales para la Industria Petrolera Estatal, entre la Secretaría de Hacienda y Crédito Público y Nacional Financiera, con la participación de la Secretaría de Economía, para canalizar recursos financieros a las empresas proveedoras locales, en particular pequeñas y medianas, como una medida de apoyo para cumplir la meta establecida de aumento de la proveeduría nacional.

A pesar de las oportunidades potenciales que abre la Ley de Petróleos Mexicanos, es fundamental mantener un equilibrio entre su necesidad de tener acceso a insumos con estándares internacionales de calidad y precio, y el fomento a la proveeduría nacional. Por lo que las metas de incremento del contenido nacional deben tener una gradualidad congruente con el aumento de la eficiencia de las cadenas productivas del país, que logren condiciones competitivas bajo parámetros internacionales en materia de costos, calidad y efectividad.
La Estrategia de Desarrollo de Proveedores y Contratistas plantea el desarrollo de proyectos hacia sectores específicos, industriales y regionales, con el objetivo de incrementar el contenido nacional y la competitividad de la industria que atiende la demanda de PEMEX.

Es por ello, que el Fideicomiso para Promover el Desarrollo de Proveedores y Contratistas Nacionales para la Industria Petrolera Estatal (FISO) lanzó la convocatoria para Cámaras y/o Asociaciones Empresariales representantes de la industria nacional de bombas utilizadas por la industria petrolera, que deseen apoyar para satisfacer las necesidades de la cadena de valor de la industria petrolera nacional, a participar en la elaboración del presente "Estudio Sectorial: Bombas Utilizadas por la Industria Petrolera".

A consecuencia de, la Cámara Nacional de la Industria de Transformación (CANACINTRA) participa en el presente estudio sectorial, con el objeto de identificar áreas de oportunidad en el sector de bombas petroleras, para posteriormente implementar programas específicos de desarrollo de proveedores y contratistas en beneficio de las empresas del sector de bienes de capital, buscando así incrementar el grado de integración nacional en las contrataciones de PEMEX.
OBJETIVO

El presente estudio sectorial tiene como objetivo generar un diagnóstico de la industria nacional de bombas utilizadas en la industria petrolera, conocer su capacidad instalada, su grado de integración nacional, su desarrollo potencial, y sus procesos de proveeduría hacia PEMEX, así como, proponer una serie de estrategias y líneas de acción para buscar el fortalecimiento de sus capacidades de producción e incrementar su grado de integración nacional.

Objetivos Específicos

- Identificar las principales brechas entre la demanda y la oferta nacional de bombas utilizadas en la industria petrolera.
- Identificar el Grado de Integración Nacional (GIN).
- Analizar las cadenas de producción involucradas en la fabricación que tengan bajo GIN o sean de fabricación extranjera.
- Analizar otros factores productivos que impactan en la competitividad como tecnología, procesos, financiamiento, personal, capacitación, entre otros.
- Desarrollar un diagnóstico de retos y oportunidades del sector.
ALCANCE

Definición de Bombas
Para efectos del presente estudio sectorial, se utilizará la definición de bomba como una máquina que absorbe energía mecánica y puede provenir de un motor eléctrico, térmico, entre otros; transformándola en energía que transfiere a un fluido como energía hidráulica, la cual permite que el fluido pueda ser transportado de un lugar a otro, a un mismo nivel y/o a diferentes niveles y/o a diferentes velocidades.

Clasificación General
Las bombas son empleadas para una diversidad de usos, existen desde las de uso doméstico hasta las que tienen una alta complejidad, como es el caso de las que son usadas por la industria petrolera. Cada bomba responde a una necesidad específica, por lo que existe alta variedad de diseños, materiales y capacidades que en general se agrupan conforme a la siguiente clasificación (Tabla 1.1). Las dos principales clasificaciones de bombas son: de desplazamiento positivo (rotatorias y reciprocantes) y dinámicas (centrífugas, periféricas y especiales).

Tabla 1.1 Clasificación General de Bombas

Fuente: Hydraulic Institute.
Principales Bombas Utilizadas en la Industria Petrolera

En la industria petrolera los sistemas de bombeo o bombas se utilizan comúnmente para el transporte de hidrocarburos y sus derivados, manejo de fluidos de los procesos de producción, servicios auxiliares y apoyo a los procesos.

Un ejemplo son las bombas utilizadas en oleoductos para el transporte de petróleo, en donde, variables como la altura, diámetro de tuberías, velocidad requerida, entre otros, deben considerarse en el diseño de las mismas. Los tipos de bombas más usados por la industria petrolera se muestran en la siguiente Tabla 1.2.

Tabla 1.2 Principales Tipos de Bombas Utilizadas en la Industria Petrolera

<table>
<thead>
<tr>
<th>Bombas Industria Petrolera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento Positivo</td>
</tr>
<tr>
<td>Rotatorias</td>
</tr>
<tr>
<td>Tornillos</td>
</tr>
<tr>
<td>Reciprocantes</td>
</tr>
<tr>
<td>Diafragma</td>
</tr>
<tr>
<td>Embolo</td>
</tr>
<tr>
<td>Dinámicas</td>
</tr>
<tr>
<td>Centrífugas</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX.

La industria petrolera maneja una alta variedad de fluidos, sujetos a una serie de propiedades físicas. Las propiedades de un fluido son las que definen el comportamiento y características del mismo, tanto en reposo como en movimiento. Las principales propiedades de un fluido se muestran en la Tabla 1.3.

Tabla 1.3 Principales Propiedades de Fluidos

<table>
<thead>
<tr>
<th>Viscosidad</th>
<th>Entalpía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad</td>
<td>Entropía</td>
</tr>
<tr>
<td>Presión</td>
<td>Calores específicos</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Peso y volumen específicos</td>
</tr>
<tr>
<td>Energía interna</td>
<td>Capilaridad</td>
</tr>
</tbody>
</table>

Fuente: Información proporcionada por PEMEX.
En términos generales, las principales propiedades físicas de los fluidos para calcular las capacidades requeridas por una bomba son viscosidad\(^1\) y densidad\(^2\).

Los principales tipos de fluidos trasportados por PEMEX se expresan en la siguiente Tabla 1.4.

<table>
<thead>
<tr>
<th>Tabla 1.4 Principales Tipos de Fluidos en la Industria Petrolera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite</td>
</tr>
<tr>
<td>Ácido</td>
</tr>
<tr>
<td>Agua</td>
</tr>
<tr>
<td>Amina</td>
</tr>
<tr>
<td>Asfalto</td>
</tr>
</tbody>
</table>

Fuente: Modelo de Pronóstico de Demanda de PEMEX.

Conforme a la demanda estimada de PEMEX y la normatividad empleada para sus adquisiciones, se definió una clasificación general por tipo de bombas: centrífugas, de desplazamiento positivo, ya sean recíprocantes como las bombas de diafragma o émbolo, o rotatorias como bombas de tornillo (Tabla 1.5).

<table>
<thead>
<tr>
<th>Tabla 1.5 Despiece de las principales partes de las bombas utilizadas en la Industria Petrolera</th>
</tr>
</thead>
</table>

Bomba Centrífuga

Equipos con un elemento rotativo (rodete) que comunica velocidad al líquido y genera presión.

Componentes Principales

1. Carcosa
2. Impulsor
3. Caja de Rodamientos
4. Flecha

\(^1\) La viscosidad expresa la prestancia con la cual un fluido fluye cuando es obligado por una fuerza externa.

\(^2\) La densidad – peso ó peso específico de una sustancia es su peso por unidad de volumen.
Bombas de Émbolo

Equipos basados en el movimiento alternativo de un pistón de doble efecto, accionado por un pistón hidráulico.

Componentes Principales
1. Cilindro
2. Émbolo
3. Válvulas
4. Cigüeñal
5. Cuerpo

Bombas de Diafragma

Equipos con una varilla reciproante que mueve un diafragma flexible dentro de una cavidad, descargando fluido en forma alternada.

Componentes Principales
1. Diafragma
2. Válvula de Retención
3. Válvula de Succión
4. Bola de Descarga
5. Válvula de Purga de Aire
6. Válvula de Alivio
7. Pistón
Bombas de Tornillos

Equipos con un impulsor helicoidal que acciona uno o más tornillos para generar una presión que permite el movimiento de los fluidos axialmente.

Componentes Principales
1. Carcasa
2. Rotor
3. Estator
4. Flecha
5. Camisas
6. Sello

Es importante señalar que una definición más amplia de las bombas analizadas en el presente estudio se encuentra en las Normas de Referencia (NRF)\(^3\), las cuales tienen como objetivo establecer los requisitos técnicos y documentales que deben cumplir los diferentes tipos de bombas utilizadas por la industria petrolera, ya sea adquiridas o arrendadas por PEMEX y sus organismos subsidiarios. Las NRF toman como base diversas normas de carácter internacional, mismas que se modifican y/o adicionan conforme a los requerimientos particulares de PEMEX (Tabla 1.6).

<table>
<thead>
<tr>
<th>NRF</th>
<th>Bombas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRF-050-PEMEX-2012 Bombas Centrífugas</td>
<td>Centrífugas</td>
</tr>
<tr>
<td>NRF-182-PEMEX-2013 Bombas de Desplazamiento Positivo: Dosificadoras</td>
<td>Diafragma y Pistón</td>
</tr>
<tr>
<td>NRF-190-PEMEX-2014 Bombas Reciprocantes</td>
<td>Émbolo</td>
</tr>
<tr>
<td>NRF-209-PEMEX-2014 Bombas Rotatorias</td>
<td>Engranyes y Tornillos</td>
</tr>
</tbody>
</table>

Fuente: Normas de Referencia Vigentes, publicadas en la página:

\(^3\) Las Normas de Referencia son de aplicación general y observancia obligatoria en la adquisición o arrendamiento de Bombas, que lleve a cabo Petróleos Mexicanos y Organismos Subsidiarios, por lo que se deben incluir en todo proceso de contratación, licitación pública, invitación a cuando menos tres personas o adjudicación directa, como parte de los requerimiento que se deben cumplir.
Una norma internacional en la que se sustenta la adquisición de bombas, es la clasificación utilizada por el American Petroleum Institute (API)4, misma que establece los tipos y clases de materiales de fabricación de las bombas utilizadas por la industria petrolera (Anexo 3. Tipos de Bombas Analizados). Derivado de lo anterior, el análisis subsecuente se desagrega por el tipo de bomba y su material de fabricación conforme a dicha clasificación.

Con la finalidad de cumplir con los objetivos del estudio, se tienen como sujetos del mismo a empresas fabricantes nacionales de los tipos de bombas utilizadas por la industria petrolera, por lo que dejaron de considerarse fabricantes internacionales, empresas de distribución y/o comercialización, fabricantes de componentes o piezas y ensambladores o integradores de bombas.

Para la selección de las empresas fabricantes participantes en el presente estudio sectorial, se realizó una depuración de tres bases de datos:

1. Empresas Fabricantes de la Rama de Bombas agremiadas a la CANACINTRA
2. Empresas proveedoras de PEMEX de Organismos Subsidiarios (OS) y empresas registradas en el Directorio Institucional de Proveedores y Contratistas (DIPC)
3. Empresas de la clase de actividad 333910, \textit{Fabricación de Bombas y Sistemas de Bombeo}, del Directorio Estadístico Nacional de Unidades Económicas (DENUE) del INEGI

4 Asociación comercial estadounidense, especializada en el desarrollo de normas, estudios e investigaciones en los procesos de producción, refinamiento, distribución, entre otros aspectos, relacionados con la industria internacional del petróleo y del gas natural.
PROCEDIMIENTOS DE CONTRATACIÓN

PEMEX y sus organismos subsidiarios realizan sus contrataciones mediante los siguientes procedimientos:

- Ley de Petróleos Mexicanos.- cuando se trate de actividades productivas de carácter sustantivo.
- Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público (LAASSP).
- Ley de Obras Públicas y Servicios Relacionados con las Mismas (LOPSRM).

El marco regulatorio vigente al presente estudio considera tres procedimientos para realizar las contrataciones de obras, bienes y servicios, y arrendamientos:

- Licitación pública.
- Invitación a cuando menos tres personas.
- Adjudicación directa.

Con base en los criterios provistos por la Secretaría de Economía y la normatividad de PEMEX, un bien es considerado como nacional cuando cumple las siguientes dos condiciones: 1) que haya sido fabricado en México y 2) cuente con un grado de integración nacional de por lo menos 65%, o los respectivos casos de excepción que marca la misma Secretaría de Economía; es indispensable que los participantes cumplan este criterio cuando se llevan a cabo procesos de contratación de carácter nacional, ya sea a través de la Ley de PEMEX o de LAASSP. En el caso de obras públicas se establece que en las contrataciones podrán requerirse bienes de fabricación nacional, por el porcentaje del valor de los trabajos que determine la entidad convocante.

Derivado de lo anterior, el presente estudio sectorial tiene como uno de sus principales objetivos analizar el grado de integración nacional en la fabricación de bombas utilizadas por la industria petrolera, con el fin de generar estrategias específicas para incrementar dicho porcentaje en el mediano y largo plazo.

El método de cálculo del GIN de los bienes está dado por la siguiente fórmula:

\[
GIN = \left(1 - \frac{VIB}{VTB} \right) \times 100
\]
Donde:
- GIN es el Grado de Integración Nacional de la bomba.
- VTB es el valor total de la bomba.
- VIB es el valor total de las importaciones utilizadas para la fabricación de la bomba, incluyendo insumos y corresponde a la suma de:
 a. El valor de los Insumos importados y que se incorporan a la bomba. Dicho valor será igual al valor declarado al momento de realizar la importación adicionando, en caso de que no se encuentren incluidos en el valor declarado, los siguientes rubros:
 i. Los fletes, seguros y todos los demás costos en que se haya incurrido para el transporte del insumo hasta el punto de importación.
 ii. Los aranceles, impuestos indirectos y gastos por los servicios de agencias aduanas.
 b. El valor de los insumos importados por proveedores directos del fabricante, que los venden al fabricante de la bomba en el mismo estado en que los importaron y que se incorporan a la bomba. Dicho valor será el precio pagado por el fabricante del bien al proveedor directo del fabricante, más impuestos indirectos. En caso de que no estuviesen considerados en el precio, se incluirán los costos de seguros y fletes incurridos al transportar dichos insumos a la planta del fabricante de la bomba.
COMERCIO EXTERIOR DE BOMBAS

El Banco de México publica la información de la balanza comercial de productos manufacturados, la cual detalla las exportaciones e importaciones de los principales productos industriales. Para efecto de entender el comercio internacional de la industria de bombas, se realizó un análisis de las exportaciones e importaciones conforme a las clasificaciones arancelarias de bombas consideradas en el presente estudio sectorial (Anexo 1. Estadísticas Comercio Exterior).

En 2013 – 2014 conforme a las estadísticas del comercio internacional de bombas, las bombas centrífugas y las centrífugas especializadas en el sector petrolero muestran una balanza comercial superavitaria, es decir, el monto de las exportaciones que realizan las empresas fabricantes nacionales supera el monto de las importaciones de bombas (Tabla 1.7).

En el caso de las bombas rotatorias, específicamente las bombas de engranes y tornillos muestran una balanza comercial deficitaria, donde el valor de las importaciones realizadas supera el valor de las exportaciones de la industria nacional especializadas en la fabricación de este tipo de bombas.

<table>
<thead>
<tr>
<th>Tipo de Bomba</th>
<th>Exportaciones (Millones de dólares)</th>
<th>Importaciones (Millones de dólares)</th>
<th>Balanza Comercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrífugas</td>
<td>243.6</td>
<td>190.84</td>
<td>Superavitaria</td>
</tr>
<tr>
<td>Centrífugas para Petróleo y sus Derivados</td>
<td>32.8</td>
<td>10.9</td>
<td>Superavitaria</td>
</tr>
<tr>
<td>Engranres</td>
<td>21.3</td>
<td>48.08</td>
<td>Deficitaria</td>
</tr>
<tr>
<td>Tornillos</td>
<td>4.68</td>
<td>88.85</td>
<td>Deficitaria</td>
</tr>
</tbody>
</table>

DEMANDA AGREGADA DE BOMBAS

a) Demanda por Clasificación General

Bombas Centrífugas
La demanda agregada de bombas centrífugas representa el 55% de la demanda total de los organismos subsidiarios de PEMEX. Del 2014-2018, se estiman compras por 4,224 unidades, de las cuales 3,704 serán requeridas en nuevos proyectos de inversión y 520 unidades para cubrir las necesidades de operación de los organismos subsidiarios de PEMEX, siendo el 2015 el año con mayores requerimientos con 1,546 unidades (Gráfica 1.1). La demanda principal para nuevos proyectos de inversión se concentra en 57% en PEMEX Exploración y Producción, y un 20% en PEMEX Refinación.

Bombas de Desplazamiento Positivo
La demanda agregada de bombas de diafragma representa el 32% de la demanda total de PEMEX. En el período 2014-2018, se estima requerimientos por 2,457 unidades, de las cuales 1,445 serán atender necesidades de operación de los organismos subsidiarios de PEMEX y 1,012 para nuevos proyectos de inversión, siendo el 2015 el año con mayores requerimientos con 661 unidades (Gráfica 1.2). La demanda principal para nuevos proyectos de inversión se concentra en 53% en PEMEX Exploración y Producción, y un 42% en PEMEX Refinación.

Gráfica 1.1 Adquisiciones Históricas 2007 - 2013 y Demanda Estimada 2014 - 2018 de Bombas Centrífugas

Fuente: Elaboración propia con base en el Modelo de Pronóstico de Demanda de PEMEX.
La demanda agregada de bombas de tipo émbolo representa el 7% de la demanda total de bombas de los organismos subsidiarios de PEMEX. En el periodo 2014-2018, se estima requerimientos por 538 unidades, 340 unidades para operación y 198 para nuevos proyectos de inversión, siendo el pico de demanda en 2016 de 151 unidades (Gráfica 1.3). La demanda principal para nuevos proyectos de inversión se concentra en 79% en PEMEX Exploración y Producción.

Fuente: Elaboración propia con base en el Modelo de Pronóstico de Demanda de PEMEX.

Bombas Reciprocantes

La demanda agregada de bombas de tipo émbolo representa el 7% de la demanda total de bombas de los organismos subsidiarios de PEMEX. En el periodo 2014-2018, se estima requerimientos por 538 unidades, 340 unidades para operación y 198 para nuevos proyectos de inversión, siendo el pico de demanda en 2016 de 151 unidades (Gráfica 1.3). La demanda principal para nuevos proyectos de inversión se concentra en 79% en PEMEX Exploración y Producción.

Gráfica 1.2 Adquisiciones histórica 2007 - 2013 y Demanda Estimada 2014 - 2018 de Bombas de Diafragma

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adquisiciones</td>
<td>64</td>
<td>113</td>
<td>39</td>
<td>68</td>
<td>101</td>
<td>19</td>
<td>289</td>
<td>289</td>
<td>289</td>
<td>289</td>
<td>289</td>
<td>289</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el Modelo de Pronóstico de Demanda de PEMEX.
La demanda agregada de bombas de tornillo participa con el 5% de la demanda total de bombas. En el período 2014 – 2018, se estima requerimientos por 373 unidades, 280 para operación y 93 en nuevos proyectos de inversión, siendo el pico de demanda en 2016 de 102 unidades. El 100% de la demanda para nuevos proyectos de inversión se concentra en PEMEX Exploración y Producción (Gráfica 1.4).

Fuente: Elaboración propia con base en el Modelo de Pronóstico de Demanda de PEMEX.
Bombas de Engranajes

La demanda agregada de bombas de engranes representa el 1% de la demanda total de bombas de PEMEX. En el período 2014-2018, se estima requerimientos por 60 unidades, para atender necesidades continuas de operación de organismos subsidiarios en dicho período (Gráfica 1.5).

En términos agregados, la demanda estimada de bombas en el período 2014-2018 alcanzará un total de 7,652 unidades, concentrada principalmente en bombas Centrífugas con 55% de la demanda total y en bombas de diafragma con 32%, en una menor proporción se encuentran las bombas de tipo émbolo, tornillos y engranes (Gráfica 1.6).

Gráfica 1.5 Adquisiciones Históricas 2007 - 2013 y Demanda Estimada 2014 - 2018 de Bombas de Engranajes

Fuente: Elaboración propia con base en el Modelo de Pronóstico de Demanda de PEMEX.
b) Demanda por Tipo de Bomba

Bombas Centrífugas

Las bombas centrífugas horizontales (OH) participan con la mayor demanda por los organismos subsidiarios de PEMEX. En el período 2014-2018, se estima una demanda de 2,706 unidades, lo que representa el 64% del total de bombas Centrífugas demandadas, de las cuales 330 unidades se estiman para cubrir las necesidades de operación y 2,376 en nuevos proyectos de inversión.
Las bombas centrífugas horizontales OH2 participan con la mayor demanda con un total de 2,562 unidades, lo que representa el 61% de la demanda estimada de bombas centrífugas en el periodo 2014-2018 (Gráfica 1.7). El resto de las bombas centrífugas horizontales participan con el 25% de la demanda de este tipo, siendo la OH1 la que muestra la mayor demanda con 118 unidades en dicho lapso de tiempo (Gráfica 1.8).

Fuente: Elaboración propia con base en el Modelo de Pronóstico de Demanda de PEMEX.
En lo relativo a las bombas centrífugas (BB), del 2014-2018 se estima una demanda de 763 bombas, de las cuales 663 unidades se adquirirían para nuevos proyectos de inversión y 100 unidades para cubrir las necesidades de operación.

En esta clasificación de bombas, el tipo BB3 es el que muestra la mayor demanda estimada con un total de 220 unidades, de las cuales 185 se adquirirán para nuevos proyectos. De forma similar, los tipos de bombas BB1 y BB2 presentan una demanda con 207 y 178 unidades, respectivamente (Gráfica 1.9).
Gráfica 1.9 Demanda Estimada de Bombas Centrífugas BB
(2014 - 2018)

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB5</td>
<td>25</td>
<td>55</td>
<td>52</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>BB3</td>
<td>37</td>
<td>83</td>
<td>56</td>
<td>35</td>
<td>9</td>
</tr>
<tr>
<td>BB2</td>
<td>4</td>
<td>84</td>
<td>69</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>BB1</td>
<td>19</td>
<td>74</td>
<td>53</td>
<td>46</td>
<td>15</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
En lo relativo a las bombas centrífugas verticales suspendidas (VS), en el período 2014-2018 se prevé una demanda de 463 bombas, de las cuales 90 unidades se estiman para cubrir las necesidades de operación y 373 en nuevos proyectos de inversión (Gráfica 1.10).

En esta clasificación de bombas, el tipo VS4 es el que presenta la mayor demanda estimada en el período 2014-2018 con un total de 293 unidades, lo que representa el 63% del total de este tipo de bombas, de las cuales 283 se requerirán para nuevos proyectos (Gráfica 1.11).

Gráfica 1.11 Demanda Estimada de Bombas Centrífugas VS4 (2014 - 2018)

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Finalmente, existen otras bombas centrífugas. En el período 2014-2018 para este tipo se estima una demanda de 292 unidades requeridas para nuevos proyectos de inversión (Gráfica 1.12).

Gráfica 1.12 Demanda Estimada de Otras Bombas Centrífugas
(2014 - 2018)

<table>
<thead>
<tr>
<th></th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>-</td>
</tr>
<tr>
<td>2016</td>
<td>-</td>
</tr>
<tr>
<td>2017</td>
<td>-</td>
</tr>
<tr>
<td>2018</td>
<td>-</td>
</tr>
<tr>
<td>Reverse Circulation</td>
<td>-</td>
</tr>
<tr>
<td>Otras No Especificadas</td>
<td>18</td>
</tr>
<tr>
<td>Hollow Shaft</td>
<td>-</td>
</tr>
<tr>
<td>External Heat exchanger</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el Modelo de Pronóstico de Demanda de PEMEX.
Bombas de Desplazamiento Positivo

La bombas de diafragma se clasifican en los siguientes tipos: Diafragma, Diafragma – Simplex, Diafragma – Dúplex, y Diafragma – Triplex. En el período 2014-2018, se estima una demanda total de 2,457 unidades, pronosticándose requerimientos de 1,445 para operación y 1,012 para nuevas inversiones (Gráfica 1.13).

Fuente: Elaboración propia con información del Modelo de Pronóstico de Demanda de PEMEX.

Bombas Reciprocantes

Bombas de Émbolo

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émbolo - Tríplex</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Émbolo - Simplex</td>
<td>8</td>
<td>28</td>
<td>56</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Émbolo - Multiplex</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Émbolo - Dúplex</td>
<td>0</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Émbolo</td>
<td>95</td>
<td>73</td>
<td>83</td>
<td>75</td>
<td>68</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información del Modelo de Pronóstico de Demanda de PEMEX.
Bombas de Engranes

La bombas rotatorias de engranes se clasifican como de engranes internos y engranes externos. En el periodo 2014-2018, se estima una demanda total de 60 unidades para atender principalmente las necesidades de operación y mantenimiento de los organismos subsidiarios de PEMEX (Gráfica 1.15).

![Gráfica 1.15 Demanda Estimada de Bombas de Engranes (2014 - 2018)](attachment:image)

Fuente: Elaboración propia con información del Modelo de Pronóstico de Demanda de PEMEX.

Bombas de Tornillos

La bombas rotatorias de tornillos se clasifican en tres tipos: Tornillos Gemelos, Tres Tornillos y de Cavidad Progresiva. De 2014-2018, se estima una demanda total de 373 unidades de bombas de tornillos, estimándose 93 para proyectos de inversión, y 280 para cubrir las necesidades de operación y mantenimiento de los organismos subsidiarios de PEMEX (Gráfica 1.16).

Las bombas de Tres Tornillos presentan una mayor estimación de demanda en el periodo 2014-2018, se prevé requerimientos de 298 bombas, lo que representa el 80% de la demanda de este tipo de bombas, de las cuales 280 se adquirirán para operaciones y 18 para proyectos de inversión.
c) Demanda por Tipo y Material

En el presente apartado se muestra el análisis de la demanda de PEMEX y sus organismos subsidiarios por tipo y material de bomba conforme a las norma API por principales bombas demandadas. Con la finalidad de realizar un análisis agregado de la demanda, se definieron tres rangos de capacidades Alto, Medio y Bajo del gasto diferencial de la bomba, expresado en litros por segundo, para agrupar la oferta de las bombas fabricadas y realizar la comparación agregada con la demanda estimada de PEMEX.

Bombas Centrífugas

Como se señaló en el apartado anterior, las bombas centrífugas del tipo OH2 son las que presentan la mayor demanda estimada de PEMEX. A continuación se muestra la demanda de las bombas centrífugas horizontales OH2 por su tipo de material de fabricación conforme a la norma API y los rangos de capacidades de gasto diferencial establecidos.

Por su tipo de material de fabricación, las bombas centrífugas horizontales OH2 Materiales S-6 presentan la mayor demanda estimada con un total de 994 unidades (Gráfica 1.17), lo que

5 El gasto diferencial es la razón a la cual un fluido cruza la sección transversal de una tubería en un tiempo determinado.
representa el 39% de la demanda total de OH2, de las cuales 468 se demandarán en un rango de gasto bajo (Tabla 1.8).

![Gráfica 1.17 Demanda Estimada de Bombas Centrífugas OH2 por Material API (2014 - 2018)](image)

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

| Tabla 1.8 Rangos de Gasto Diferencial (L/s) de Bombas Centrífugas Horizontales OH2 |
|--|----------------|----------------|----------------|----------------|
| Rango | Bajo | Medio | Alto |
| Intervalo | Mínimo | Máximo | Mínimo | Máximo | Mínimo | Máximo |
| 0.01 | < 10 | 11.00 | < 50 | 51 | < 316 |

Fuente: Elaboración propia con información del Modelo de Pronóstico de Demanda de PEMEX.

Las bombas OH2 con materiales S-5 y S-8 presentan una alta demanda estimada, con un total de 341 y 310 unidades respectivamente, lo que representa un 13% y 12% de la demanda de bombas OH2, principalmente en el rango de gasto bajo, 174 unidades OH2 S-5 y 161 unidades OH2 S-8 (Gráfica 1.18)
En el caso de las bombas Centrífugas horizontales BB3, la principal demanda se concentra en BB3 Materiales S-6. En 2014-2018, se demandarán un total de 136 unidades, lo que representa el 63% de la demanda total en este tipo de bomba BB3, principalmente en el rango bajo conforme a la Tabla 1.9.

Tabla 1.9 Rangos de Gasto (L/s) de Bombas Centrífugas BB3

<table>
<thead>
<tr>
<th>Rango</th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td>0.01</td>
<td>< 38.22</td>
<td>38.22</td>
<td>< 100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Las bombas VS4 Materiales S-6 presentan una demanda de 146 unidades, lo que representa el 50% de los requerimientos en dicho lapso (Gráfica 1.19), de las cuales 118 unidades se requerirán en un rango de gasto medio conforme a la Tabla 1.10.
Tabla 1.10 Rangos de Gasto (L/s) de Bombas Centrífugas Verticales VS4

<table>
<thead>
<tr>
<th>Rango</th>
<th>Mínimo</th>
<th>Medio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalos</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td>0.00</td>
<td>< 8</td>
<td>8.10</td>
<td>< 100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Bombas de Desplazamiento Positivo

Bombas de Diafragma

En lo que respecta a las bombas de desplazamiento positivo, la principal demanda se concentra en las bombas de diafragma, estimándose una demanda de 2,229 unidades, lo que representa el 91% de la demanda total de este tipo de bombas (Gráfica 1.20), principalmente 1,325 unidades de capacidades en el rango bajo conforme a la Tabla 1.11.
Tabla 1.11 Rangos de Gasto (L/s) de Bombas de Diafragma

<table>
<thead>
<tr>
<th>Rango</th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>< 9</td>
<td>8.38</td>
<td>< 300</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Bombas Rotatorias

Bombas de Tornillo

En lo relativo a las bombas de tornillos, la principal demanda se concentra en las bombas de tres tornillos, estimándose una demanda de 298 unidades, lo que representa el 80% de la demanda total, principalmente 271 unidades en el rango de capacidad bajo (Gráfica 1.21), conforme a la Tabla 1.12.
Tabla 1.12 Rangos de Gasto (L/s) de Bombas de Tornillos Gemelos

<table>
<thead>
<tr>
<th>Rango</th>
<th>Interv</th>
<th>Bajo</th>
<th>Med</th>
<th>Alto</th>
<th>Bajo</th>
<th>Med</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mínima</td>
<td>Máxima</td>
<td>Mínima</td>
<td>Máxima</td>
<td>Mínima</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.34</td>
<td>< 7.27</td>
<td>7.27</td>
<td>< 344.7</td>
<td>> 344.7</td>
<td>1,033.42</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Bombas de Engraneras

En las bombas de engraneres, la principal demanda se concentra en las bombas de engraneres internos, estimándose un demanda de 50 unidades, lo que representa el 83% de la demanda total de bombas de engraneres (Gráfica 1.22), principalmente en el rango medio conforme a la Tabla 1.13.
Tabla 1.13. Rangos de Gasto (L/s) de Bombas de Engranadores Internos

<table>
<thead>
<tr>
<th>Rango</th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td>Rango</td>
<td>0.32</td>
<td>< 8</td>
<td>8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Bombas de Émbolo
La demanda estimada se concentra en las bombas de émbolo con 394 unidades (Gráfica 1.23), lo que representa el 73% de la demanda, principalmente en el rango bajo conforme a la Tabla 1.14.
Tabla 1.14 Rangos de Gasto (L/s) de Bombas de Émbolo

<table>
<thead>
<tr>
<th>Rango</th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>< 0.22</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
OFERTA NACIONAL AGREGADA

En el presente apartado se muestra un análisis general de la industria de empresas fabricantes de bombas utilizadas por la industria petrolera. Para el análisis de la oferta nacional, se aplicaron un total de 18 entrevistas, conformada por 5 secciones:

1) Información general
2) Infraestructura y Procesos
3) Producción
4) Estrategia empresarial
5) Financiamiento

La entrevista se dirigió a Directores y/o Gerentes de ventas de las empresas seleccionadas con una duración aproximada de 1 hora con 30 minutos (Anexo 4. Entrevista Aplicada).

Para la aplicación de las entrevistas, se establecieron dos grupos de análisis:

1) Grupo 1 (G1) integrado por las empresas fabricantes de bombas seleccionadas en la base de datos de CANACINTRA y PEMEX, a este grupo de empresas se le aplicaron entrevistas presenciales.
2) Grupo 2 (G2) conformado por las empresas fabricantes seleccionadas en la base de datos de INEGI, a este grupo de empresas se le aplicaron entrevistas telefónicas.

a) Información General

Tamaño de Empresas

Con base en la clasificación de tamaño de empresas por número de empleos de la Ley para el Desarrollo de la Competitividad de la Micro, Pequeña y Mediana Empresa, las empresas entrevistadas se distribuyen conforme a la siguiente Tabla 1.15.

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>% Participación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grande</td>
<td>5</td>
</tr>
<tr>
<td>Mediana</td>
<td>6</td>
</tr>
<tr>
<td>Pequeña</td>
<td>6</td>
</tr>
<tr>
<td>Micro</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
Las empresas medianas y grandes participan con el 61% de las empresas entrevistadas, lo que evidencia que la fabricación de bombas requeridas por la industria petrolera tienen mayores tamaños y economías de escala que la industria nacional de bombas para usos diversos (Anexo 2. Industria de Bombas INEGI).

En términos del número de empleos generados, el 94% del empleo total es generado por las medianas y grandes empresas (Gráfica 1.24).

Gráfica 1.24 Número de Empleados de Fabricantes por Tamaño de Empresas (n=18)

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Distribución Geográfica
Las empresas entrevistadas se concentran principalmente en el Distrito Federal y el Estado de México, entidades que en conjunto agrupan el 61% de las empresas fabricantes de bombas para la industria petrolera. Asimismo, estas entidades aportan el 64% de los empleos generados (Gráfica 1.25).
Conformación y Capital Social

En lo relativo a la conformación de su capital social, el 64% del capital social de las empresas grandes proviene de aportación foránea, lo que evidencia la importancia del capital extranjero en el desarrollo de economías de escala, y la orientación de las grandes empresas para participar en economías globalizadas (Gráfica 1.26); en el caso contrario, la micro y pequeña empresa cuentan con capital exclusivamente nacional. Respecto al país de origen del capital foráneo radicado en las empresas medianas y grandes, principalmente proviene de Estados Unidos de América, Dinamarca, Suiza y Alemania (Gráfica 1.27).
En términos de su pertenencia a un grupo corporativo, se destaca que las empresas medianas y grandes con inversión foránea se han constituido en México como empresas filiales, ganando participación en el mercado nacional de fabricación de bombas para la industria petrolera (Gráficas 1.28 y 1.29).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
Las empresas de la industria nacional de bombas utilizan principalmente empleos permanentes, con una mayor participación de empleos temporales en las empresas grandes (Gráfica 1.30). Respecto al empleo por área, el 53% del empleo generado se concentra en el área de producción y operaciones, principalmente por el intensivo de recursos humanos en la fabricación de bombas, seguido de un 25% empleado en el área de administración y ventas (Gráfica 1.31).

![Gráfica 1.30 Empleos Permanentes y Temporales por Tamaño de empresa (n=18)](image)

![Gráfica 1.31 Número de Empleos por Área por Tamaño de Empresa (n=18)](image)

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

En lo relacionado con el nivel de estudios de los recursos humanos⁶, las empresas grandes cuentan con la mayor cantidad de personal calificado con niveles de estudios de educación superior en la mayoría de las áreas de trabajo. Asimismo, se denota una mejor formación de personal en todos los estratos de empresas en las áreas de administración y ventas, ingeniería y desarrollo, y calidad. En el caso de las áreas de producción y operaciones, y mantenimiento y servicios se tiene una mayor preponderancia de recursos humanos de nivel medio superior (Gráficas 1.32 a 1.36).

Gráfica 1.32 Nivel de Estudios Área Administración y Ventas por Tamaño de Empresa (n=18)

Gráfica 1.33 Nivel de Estudios Área de Producción y Operaciones por Tamaño de Empresa (n=18)

Gráfica 1.34 Nivel de Estudios Área de Ingeniería y Desarrollo por Tamaño de Empresa (n=18)

Gráfica 1.35 Nivel de Estudios Área de Mantenimiento y Servicios por Tamaño de Empresa (n=18)

Gráfica 1.36 Nivel de Estudios Área Calidad por Tamaño de Empresa

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
El 94% de las empresas entrevistadas tiene interés en implementar cursos, talleres y/o diplomados para la formación de sus empleados (Gráfica 1.37). Dentro de las principales necesidades se destacan los temas de desarrollo de mejoras en productos y/o servicios, y reducción de costos (Gráfica 1.38).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

b) Infraestructura y Procesos

En términos de la infraestructura para la fabricación de bombas, el 77% de las empresas cuenta con instalaciones propias, destacándose que las grandes empresas muestran la mayor antigüedad promedio, al igual que el mayor porcentaje de importación de maquinaria y equipo para la fabricación de bombas (Gráficas 1.39 y 1.40).
En términos de la percepción de su modernidad tecnológica, las empresas grandes y medianas consideran su equipamiento tecnológico de punta y reciente. En contraparte, las micro y pequeñas empresas lo consideran principalmente funcional (Gráfica 1.41). En términos generales, las empresas grandes consideran como alto el nivel con el que su maquinaria y equipo cumplen con los volúmenes de producción esperados (Gráfica 1.42).
El 78% de las empresas subcontrata algún proceso dentro de la fabricación de bombas, especialmente por la micro y pequeña empresa (Gráfica 1.43), que subcontratan más del 80% del proceso de producción, las limitaciones en maquinaria y equipo para fabricación pueden explicar este alto porcentaje (Gráfica 1.44).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Conforme a las entrevistas aplicadas, las empresas pequeñas destinan un mayor porcentaje de subcontratación hacia empresas foráneas, seguidas de las empresas grandes y medianas (Gráfica 1.45). En términos generales, los diferentes estratos de empresas señalaron interés Muy Alto y Alto en subcontratar proveedores nacionales (Gráfica 1.46).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
En lo que respecta a los principales procesos subcontratados se destacan:

- Fundición de componentes en los diferentes materiales de producción de la bombas,
- Fabricación de sellos mecánicos, y
- Tratamientos térmicos (Gráfica 1.47)

Gráfica 1.47 Principales procesos subcontratados (n=18, respuestas múltiples)

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Dentro de las primordiales áreas críticas para mejorar la integración de la cadena de valor, la principal mención se dirigió hacia la adquisición de materias primas, sobre todo en las medianas empresas. Respecto a las empresas grandes priorizan en la falta de adopción de normas de proveedores nacionales y en las dificultades para establecer mecanismos de selección, seguimiento y auditorías de proveedores nacionales; y pequeñas empresas identificaron como áreas críticas para la integración de su cadena de valor, la demanda inestable y los bajos volúmenes de producción de las bombas (Gráfica 1.48).
El 72% de las empresas entrevistadas, especialmente la mediana y pequeña empresa tiene identificados requerimientos tecnológicos, es decir, necesidad de maquinaria y equipo para mejorar sus capacidades de producción. Dichos requerimientos se concentran mayormente en los procesos de producción (Gráfica 1.49).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Gráfica 1.48 Principales Áreas Críticas para Mejorar la Integración de la Cadena de Valor (n=12, respuestas múltiples)

Gráfica 1.49 Identificación de Requerimientos Tecnológicos para Producción (n=18)

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
Dentro de la maquinaria y equipo que estarían interesados en adquirir, se destacan los maquinados, la adquisición de tornos y mandriladores (Gráfica 1.50).

Gráfica 1.50 Maquinaria y Equipo con Interés en Adquirir (n=18, respuestas múltiples)

<table>
<thead>
<tr>
<th>Integración de Tableros</th>
<th>Herramientales y Pastillas</th>
<th>Banco de Pruebas</th>
<th>Balanceadora</th>
<th>Impresora Tridimensional</th>
<th>Equipos Soldadura</th>
<th>Instrumentos de Medición</th>
<th>Rectificadores de Ejes</th>
<th>Mandriladora</th>
<th>Tornos</th>
<th>Maquinados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Sólo un 39% de las empresas entrevistadas, especialmente las empresas medianas y grandes, cuentan con certificaciones y/o normas requeridas por la industria petrolera (Gráfica 1.51). La principal certificación implementada es la ISO 9000 y la adopción de la Norma API (Gráfica 1.52).

Gráfica 1.51 Certificación(es) y/o Normas Requeridas por la Industria Petrolera Implementadas (n=18)

| Gráfica 1.52 Certificaciones y/o Normas Implementadas (n=18, respuestas múltiples) |
|---------------------------------|---|
| AMERIC | AMRACI |
| NFPA | Norma ISO 14000 |
| OHSAS | ANSI |
| Norma ISO 9000 | |

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
Dentro de las principales certificaciones y normas que les interesarían implementar en sus procesos, se destacan la Norma ISO 9000, UL y API. Este interés es evidente en las empresas pequeñas y medianas quienes tienen una mayor necesidad de implementar este tipo de normas con la finalidad de mejorar sus capacidades de proveeduría para la industria petrolera (Gráfica 1.53).

Gráfica 1.53 Interés en Implementación de Certificaciones y/o Normas (n=7, respuestas múltiples)

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
c) Estrategia Empresarial

Las medianas y grandes empresas tienen implementados procesos de planeación estratégica (Gráfica 1.54) siendo menor la participación de las micro y pequeñas empresas (Gráfica 1.55).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Las empresas medianas y grandes orientan sus estrategias de crecimiento hacia incrementar la calidad y ganar participación vía innovación, en contraparte las micro y pequeñas empresas privilegian ganar participación vía precio (Gráfica 1.56). Dentro de sus principales fortalezas, las medianas y grandes empresas se destacan por su capacidad de re-inversión y resistencia a retos externos, y las micro y medianas empresas en la obtención de bienes a bajos costos (Gráfica 1.57).
Las empresas grandes reconocen su liderazgo dentro de la industria nacional de bombas petroleras (Gráfica 1.58) y 83% ha sido proveedor de PEMEX (Gráfica 1.59).
Principalmente, las empresas medianas y grandes le asignan un valor alto a la importancia de las adquisiciones de PEMEX (Gráfica 1.60), a diferencia de las micro y pequeñas empresas que le asignan un nivel de importancia bajo. Las principales estrategias de las empresas entrevistadas, para incrementar sus ventas hacia PEMEX, se enfocan en ganar nuevos proyectos y obtener una mayor participación vía innovación (Gráfica 1.61).

Existe un alto interés de vender a PEMEX, sin embargo, dentro de las principales situaciones enfrentadas en los procesos de venta se mencionan el desconocimiento de procedimientos, procesos complejos y excesivos requisitos (Gráfica 1.62).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
El 94% de las empresas entrevistadas señalaron que desarrollan tecnologías propias, y que cuentan con estrategias de protección de su propiedad intelectual. En este sentido, 56% de las empresas cuenta con registros de patente (gráfica 1.63), y 28% dispone de patentes para proceder con su registro (Gráfica 1.64).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
Las empresas no identificaron dificultades para el registro de patentes, con excepción de pequeñas empresas que mencionan la falta de documentación técnica y los costos del registro (Gráfica 1.65). Actualmente, 44% de las empresas, están desarrollando algún proyecto de investigación y/o desarrollo tecnológico (Gráfica 1.66).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Los proyectos de investigación en desarrollo se encuentran principalmente en la etapa de diseño, seguido de la construcción de prototipos (Gráfica 1.67), y 56% de las empresas disponen de un laboratorio y/o área para la investigación y desarrollo tecnológico, esto sucede en mayor medida en las medianas y grandes empresas (Gráfica 1.68).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
En términos de la percepción de su nivel de desarrollo tecnológico, las empresas no tienen un esfuerzo formal para el desarrollo de actividades de innovación e investigación, principalmente los procesos suceden de forma espontánea, y sólo el 22% tiene alguna vinculación con un centro de investigación (Gráficas 1.69 y 1.70).

Los principales objetivos para la vinculación con centros de investigación mencionados por las empresas se dirigen a mejorar el cumplimiento de estándares y normatividad, mejorar la eficiencia en sus procesos de fabricación de bombas, y tener acceso a consultoría especializada en nuevas tecnologías (Gráfica 1.71). Dentro de las tendencias tecnológicas en la fabricación de bombas, se destaca las menciones hacia el manejo de nuevos materiales, el uso de herramientas de modelado de productos, la implementación de nuevos procesos de manufactura sustentable, entre otros (Gráfica 1.72).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Gráfica 1.71 Principales Objetivos para la Vinculación con Centros de Investigación (n=18, respuestas múltiples)

Gráfica 1.72 Interés en Tendencias Tecnológicas para la Fabricación de Bombas para la Industria Petrolera (n=18, respuestas múltiples)

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
El 83% de las empresas mencionaron que tienen la capacidad de adoptar e implementar estas nuevas tendencias y/o tecnologías (Gráfica 1.73), sin embargo enfatizaron en la necesidad de disponer de recursos financieros para proyectos de innovación, investigación y desarrollo (Gráfica 1.74).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

d) Financiamiento

El 50% de las empresas entrevistadas manifestaron que han recibido financiamiento, de las cuales el 44% ha sido otorgado por la banca comercial (Gráficas 1.75 y 1.76).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
El principal destino del financiamiento obtenido se dirigió a atender necesidades de capital de trabajo (Gráfica 1.77). Del 50% de las empresas que han recibido financiamiento, el 56% ya concluyó con los pagos del mismo (Gráfica 1.78). Y 89% de las empresas que recibieron financiamiento consideró un impacto alto y muy alto del apoyo recibido en las operaciones de la empresa (Gráfica 1.79). Las empresas entrevistadas utilizan como su principal fuente de financiamiento los ingresos generados por el propio negocio y los créditos de proveedores (Gráfica 1.80).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
61% de las empresas se muestran interesadas en recibir financiamiento, especialmente las pequeñas empresas, y su principal destino del financiamiento es para atender necesidades de capital de trabajo, seguido de proyectos de innovación y adquisición de activos fijos (Gráficas 1.81 y 1.82). Los programas de apoyo del Consejo Nacional de Ciencia y Tecnología (CONACYT) y Nacional Financiera (NAFIN), son los principales programas gubernamentales que interesan a las empresas (Gráfica 1.83). Dentro de las principales situaciones enfrentadas en la gestión de apoyos se destacan los excesivos requisitos y la ausencia de proyectos de investigación y desarrollo tecnológico internos (Gráfica 1.84).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
e) Resumen Agregado Oferta Nacional

A continuación se presenta un compendio de las áreas de oportunidad identificadas para mejorar la fabricación de bombas utilizadas por la industria petrolera.

Estructura de las Empresas

- Las estrategias y ventajas competitivas de la industria de bombas nacionales se centra en la capacidad de generar economías de escala internas.
- Las empresas grandes están aprovechando las ventajas que ofrece generar economías de escala interna; el 72% de los empleos generados se concentran en las empresas grandes, en contraparte la micro y pequeña no están desarrollando economías internas, ni procesos de complementariedad mediante la integración de la cadena de valor.
- Se cuenta con una alta concentración geográfica de las empresas fabricantes, 61% de las empresas entrevistadas se ubican en el Distrito Federal y el Estado de México, generando el 64% de los empleos.
- El 64% de las empresas grandes tiene capital social con aportación foránea, lo que evidencia la importancia del capital extranjero en el desarrollo de economías de escala, y la orientación de las grandes empresas para participar en economías globalizadas con un enfoque hacia mercados de exportación de bombas.

Capacitación

- Las empresas grandes, en la mayoría de las áreas de trabajo contienen la cantidad más alta de personal calificado, que cuenta con niveles de estudios de educación superior.
- Se denota una mejor formación del personal en todos los estratos de las empresas en las áreas de administración y ventas, ingeniería y desarrollo, y calidad.
- Dentro de las principales necesidades de capacitación por tema, se destaca la formación para el desarrollo de nuevos productos y servicios, y la reducción de costos.
- Dentro de las necesidades específicas de capacitación se mencionaron las metodologías de Lean Manufacturing y Six Sigma.
Infraestructura

- Las grandes empresas muestran la mayor antigüedad promedio y porcentaje de importación de maquinaria y equipo para la fabricación de bombas.
- La mediana y pequeña empresa tiene identificados requerimientos tecnológicos, maquinaria y equipo para mejorar sus capacidades de producción, orientados principalmente a los procesos de fabricación de bombas.
- Dentro de la maquinaria y equipo que estarían interesados en obtener, se destacan los maquinados, la adquisición de tornos y mandriladores.

Procesos

- El 78% de las empresas subcontrata algún proceso de su fabricación de bombas, especialmente la micro y pequeña empresa, mismo que podría explicarse por sus limitaciones en maquinaria y equipo para la fabricación de bombas.
- Las empresas pequeñas destinan un mayor porcentaje de subcontratación hacia empresas foráneas, derivado de la búsqueda de precios más accesibles por la importación de componentes e insumos, que los de subcontratación de procesos de producción locales.
- Los principales procesos subcontratados son la fundición de componentes en los diferentes materiales de producción de las bombas, la fabricación de sellos mecánicos y tratamientos térmicos.
- Dentro de las principales áreas críticas para mejorar la integración de la cadena de valor, las menciones de mayor trascendencia se dirigen a tener una demanda limitada y discontinua para desarrollar una cadena de valor integrada, dificultad de acceso a materias primas; bajos volúmenes de producción; falta de desarrollo de nuevos productos, la existencia de proveedores específicos; y la necesidad de implementar mecanismos para un mejor seguimiento de proveedores.

Normas y Certificaciones

- Sólo un 39% de las empresas, especialmente medianas y grandes, cuentan con certificaciones y/o normas requeridas por la industria petrolera.
- Dentro de las principales normas que están interesados en implementar en sus procesos se destacan ISO 9000, UL y API. El interés es evidente en pequeñas y medianas empresas quienes tienen una mayor necesidad de implementar este tipo de normas con la finalidad de mejorar sus capacidades de proveeduría para la industria petrolera.
Las adquisiciones de las bombas requeridas por la industria petrolera están reguladas a través de las normas de referencia, mismas que establecen los requisitos para su adquisición. En este sentido, existe un desconocimiento de las especificaciones técnicas y condiciones requeridas, especialmente en la micro y pequeñas empresas, por lo que la industria considera que dichas especificaciones son excesivas e inexactas.

Desarrollo Tecnológico

- Las empresas señalaron que desarrollan tecnologías propias y que cuentan con estrategias de protección de su propiedad intelectual; un 28% dispone de patentes para proceder con su registro.
- Actualmente, 44% de las empresas, están desarrollando algún proyecto de investigación y/o desarrollo tecnológico. Los proyectos de investigación en desarrollo se encuentran principalmente en la etapa de diseño y construcción de prototipos.
- El 56% de las empresas disponen de un laboratorio y/o área para la investigación y desarrollo tecnológico; sin embargo, los procesos de innovación suceden de forma espontánea, las empresas no tienen un enfoque hacia este tipo de actividades, y sólo 22% cuenta con alguna vinculación a un centro de investigación.
- Los principales objetivos para la vinculación con centros de investigación mencionados por las empresas se dirigen a mejorar su cumplimiento de estándares y normatividad, a hacer más eficientes sus procesos de fabricación de bombas, y tener acceso a consultoría especializadas en nuevas tecnologías.
- Dentro de las tendencias tecnológicas en la fabricación de bombas, se destacan el manejo de nuevos materiales, el uso de herramientas de modelado de productos, y la implementación de nuevos procesos de manufactura sustentable, entre otros.

Grado de Integración Nacional

- Actualmente, las empresas declaran el grado de integración nacional de sus bienes; en los procedimientos nacionales para adquisiciones se contempla un GIN mínimo de 65%.
- Por otro lado, tanto las contrataciones de proyectos “llave en mano” como las adquisiciones de sistemas de bombeo, limitan el interés por desarrollar bombas con un alto grado de integración nacional, toda vez que el precio de la bomba se diluye al incluirse dentro de los costos totales.
Capacidad instalada

- Si bien existen familias de bombas con una alta disponibilidad de oferta nacional, la capacidad instalada nacional es insuficiente para atender la demanda en los diversos tipos, materiales y volúmenes que requiere PEMEX.
- En términos generales, la micro y pequeñas presentan una baja competitividad en su capacidad de producción con relación a empresas nacionales con participación foránea. En consecuencia, las ventajas competitivas de la industria de bombas nacionales se centran en la capacidad de generar economías de escala internas.
- La gran mayoría de las empresas fabricantes de los tipos de bomba que PEMEX está demandando, especialmente las empresas con participación de capital foráneo se encuentran exportando una cantidad importante de su producción.
- En el caso de las empresas grandes con participación foránea, fabrican localmente determinados tipos de bombas, destinando su producción al mercado local y a mercados de exportación. En distintos tipos de bombas, cuentan con un GIN bajo, e importan la bomba de otras filiales del corporativo.

Estrategia Empresarial

- Las medianas y grandes empresas tienen implementados procesos de planeación estratégica, siendo menores en la micro y pequeñas empresas.
- Las empresas medianas y grandes le asignan un valor alto a la importancia de las adquisiciones de PEMEX, a diferencia de la micro y pequeñas empresas que le asignan un nivel de importancia bajo. Dentro de las principales estrategias para incrementar sus ventas hacia PEMEX esta el ganar nuevos proyectos y obtener una mayor participación vía innovación.
- Existe un alto interés de vender a PEMEX, sin embargo dentro de las principales problemáticas señalan el desconocimiento de procedimientos, los cuales son complejos y piden excesivos requisitos.
Financiamiento

- El 50% de las empresas entrevistadas manifestaron que han recibido financiamiento, del cual el 44% ha sido otorgado por la banca comercial. Las empresas grandes con capital foráneo tienen un mayor acceso a fuentes de financiamiento.
- Actualmente, la principal fuente de financiamiento de las empresas entrevistadas son los ingresos generados por el propio negocio, seguido del crédito de proveedores y préstamos de la banca comercial.
- El acceso a capital de trabajo es un obstáculo para la micro y pequeñas empresas, que no les permite incrementar sus ventas a PEMEX. Por lo que, este tamaño de empresas enfrentan mayores restricciones de acceso a instrumentos de financiamiento en relación con las grandes empresas.
- Existe un alto interés en programas del Consejo Nacional de Ciencia y Tecnología (CONACYT) y programas de Nacional Financiera (NAFIN). Dentro de las principales situaciones enfrentadas en la gestión de apoyos se destacan los excesivos requisitos y la ausencia de proyectos de investigación y desarrollo tecnológico internos.

Demanda de PEMEX

- Una de las principales inquietudes de las empresas fabricantes de bombas para la industria petrolera es el desconocimiento de la demanda estimada de PEMEX, señalando que el presente estudio se dirige a facilitar esta información, y la alta incertidumbre en el cumplimiento de los programas de adquisiciones de PEMEX.
- La alta incertidumbre en los programas de adquisiciones, sumado a los señalamientos de desconocimiento de procesos, su complejidad y excesivos requisitos; generan un efecto altamente negativo en las decisiones de inversión.
- En este sentido, la falta de inversión limita las capacidades de producción de los diferentes tipos de bombas y materiales de fabricación demandados, así como la integración de su cadena de valor, dada la inestabilidad de la demanda y el bajo volumen de fabricación de bombas.
- La limitada integración de la cadena de valor y el bajo volumen de producción nacional, implican que insumos o materias primas de los proveedores sean más caros en el mercado nacional o no estén disponibles, por lo que las empresas fabricantes prefieran importarlos.
OFERTA NACIONAL POR TIPO Y MATERIAL

En el presente apartado, se muestra una descripción general de las bombas fabricadas por las empresas entrevistadas a partir del tipo y material de fabricación, conforme a la normas de referencia para la adquisición de esta clase de insumos por PEMEX.

a) Descripción General de la Oferta

Bombas Centrífugas

La industria nacional tiene capacidad de producción en bombas centrífugas horizontales del tipo OH2 con las clasificaciones de materiales I-1 y S-6 (Gráfica 1.85). Es importante señalar que las bombas de OH2 I-1 son una clase de bomba, de la cual PEMEX no cuenta con una demanda estimada significativa, como en el caso de las bombas OH2 S-6, donde se concentra su principal demanda. En este sentido, la industria nacional tiene desarrolladas capacidades en la bomba OH2 I-1 donde no existe una demanda estimada significativa de PEMEX, lo que se puede atribuir a los materiales de fabricación, mismos que actualmente no son demandas por la industria petrolera.

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
En lo que respecta a otros tipos de bombas centrífugas, diferentes a las bombas OH2, la industria nacional tiene capacidad de producción principalmente para la fabricación de bombas centrífugas verticales suspendidas del tipo VS4 y clasificación de materiales S-6, siendo esta la que muestra la mayor demanda estimada por parte de PEMEX en este tipo de bombas.

Respecto a los tipos y clasificaciones de bombas OH6 I-1, VS1 I-2 y OH3 S-6, no se tiene una demanda significativa de PEMEX, lo cual implica que no obstante las empresas tienen determinadas capacidades de producción, estas no se alinean con la demanda estimada de PEMEX (Gráfica 1.86).

![Gráfica 1.86 Otras Bombas Centrífugas fabricadas por Empresas Participantes (n=4)](attachment:image)

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Bombas de Émbolo

En lo relativo a las bombas de émbolo, la industria nacional tiene capacidad de producción de bombas de émbolo simplex y émbolo dúplex siendo las bombas de émbolo simplex donde se concentra la principal demanda estimada de PEMEX (Gráfica 1.87).
La industria nacional, tiene capacidad de producción en los tipos de tres tornillos y tornillos gemelos, con una demanda estimada de PEMEX, en ambos tipos de bombas (Gráfica 1.8).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.

Bombas de Tornillos

La industria nacional, tiene capacidad de producción en los tipos de tres tornillos y tornillos gemelos, con una demanda estimada de PEMEX, en ambos tipos de bombas (Gráfica 1.8).

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas participantes.
ANÁLISIS DE BRECHA POR TIPO Y MATERIAL

El presente apartado muestra el análisis del GIN, la capacidad instalada y utilizada, el destino de la producción, ya sea para exportación y ventas directas o indirectas a PEMEX, y las brechas existentes entre la demanda estimada y la oferta nacional de empresas fabricantes por tipo y clasificación de material conforme a la Norma API. Los datos de capacidad instalada fueron provistos por las empresas fabricantes, considerando su producción en el 2010–2013, y su estimación de producción de 2014–2018.

Para el cálculo del grado de integración nacional, se realizó una estructura de costos a partir de las partes principales de cada tipo de bomba, se definió en la entrevista la nacionalidad y porcentaje de importación de cada parte principal, para, finalmente, aplicar la fórmula de cálculo del GIN por bomba mediante la nacionalidad de cada parte principal.

a) Análisis de Brecha

Bombas Centrífugas

OH2 S-4

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas entrevistadas.
• La fabricación de la bomba OH2 S-4 en Rango Medio muestra un 100% de GIN.
• Se tiene una capacidad instalada de 100 unidades anuales, con una producción anual de 42 unidades en 2013.
• El 95% de la producción se destina a la exportación, destinando un 5% a ventas indirectas a PEMEX, mediante contratistas.

Fuente: Elaboración propia con resultados de entrevistas aplicadas a empresas entrevistadas.

El análisis entre la demanda y oferta de las bombas centrífugas horizontales OH2 S-4 muestra que existe una capacidad de producción instalada (100 unidades anuales) y utilizada suficiente para satisfacer la demanda estimada de las bombas de rango medio. Respecto a los rangos alto y bajo, en este último se concentra la principal demanda estimada para los próximos años, no se tiene la capacidad instalada para atender su demanda (Gráfica 1.92).

Fuente: Elaboración propia con resultados de entrevistas.

Nota: El triángulo expresa que se tiene capacidad de producción en el rango de capacidad medio.
Tabla 1.16 Análisis de Brecha Bombas Centrífugas Horizontales OH2 S-4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>- 10</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
<td></td>
</tr>
<tr>
<td>Medio</td>
<td>100% 30</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
<td></td>
</tr>
<tr>
<td>Bajo</td>
<td>- 175</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas a empresas participantes.

OH2 S-5

En las bombas centrífugas horizontales OH2 con la clase de materiales S-5 Rango Alto se obtuvo un 83% de GIN, superior al requerimiento del 65% de GIN para considerar el bien como Nacional (Gráfica 1.93). Se cuenta con una capacidad instalada de 100 unidades anuales. Del 2010-2013, no se fabricaron bombas principalmente por la falta de demanda (Gráfica 1.94).

Fuente: Elaboración propia con resultados de entrevistas.
En el caso de la flecha de la bomba y caja de rodamientos, el principal motivo para su importación radica en la falta de proveeduría local, el precio y la calidad obtenidos (Gráfica 1.95).

Gráfica 1.95 Motivos de Importación por Principales Componentes

Bombas OH2 S-5 Rango Alto

<table>
<thead>
<tr>
<th>Motivo</th>
<th>Flecha</th>
<th>Rodamientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falta Proveeduría Local</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Calidad</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Precio</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

El análisis entre la demanda y oferta de las bombas centrífugas horizontales OH2 S-5 muestra que se cuenta con una capacidad instalada de 100 unidades anuales para atender la demanda estimada sólo de bombas con capacidades en el rango alto. Respecto a las bombas de rangos de capacidades medio y bajo, donde se concentra la principal demanda de PEMEX en los próximos años, no se tiene una capacidad instalada específica para atender dicha demanda (Gráfica 1.96).
Tabla 1.17 Análisis de Brecha Bombas Centrífugas Horizontales OH2 S-5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>85%</td>
<td>76</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Medio</td>
<td>-</td>
<td>91</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Bajo</td>
<td>-</td>
<td>174</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Nota: El triángulo expresa que se tiene capacidad de producción en el rango de capacidad alto.

Gráfica 1.96. Análisis de Brecha de Bombas Centrífugas OH2 S-5 por Rango (2014 - 2018)

Fuente: Elaboración propia con resultados de entrevistas.
La fabricación de la bomba OH2 S-6 en Rango Alto muestra un 53% de GIN.

Se tiene una capacidad instalada de 300 unidades anuales, con una producción de 130 unidades en 2013.

El 60% de la producción se destina a mercados de exportación, 35% en ventas indirectas a PEMEX, a través de contratistas, y 5% en ventas directas.

Fuente: Elaboración propia con resultados de entrevistas.
La fabricación de la bomba OH2 S-6 en Rango Medio muestra un 53% de GIIN.

Se tiene una capacidad instalada de 300 unidades anuales, con una producción de 190 unidades en 2013.

El 60% de la producción se destina a la exportación, y 35% hacia ventas indirectas a PEMEX, mediante contratistas.

Fuente: Elaboración propia con resultados de entrevistas.
La fabricación de la bomba OH2 S-6 en Rango Bajo muestra un 53% de GIN.
Se tiene una capacidad instalada de 300 unidades anuales, con una producción de 270 unidades en 2013.
El 60% de la producción se destina a mercados de exportación, 35% a ventas indirectas a PEMEX, y 5% a ventas directas.

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda y oferta de las bombas centrífugas horizontales OH2 S-6 muestra una capacidad instalada (300 unidades anuales) y utilizada para atender la demanda estimada correspondiente a los rangos alto, medio y bajo (Gráfica 1.106).

Gráfica 1.106 Análisis de Brecha de Bombas Centrífugas OH2 S-6 por Rango (2014 - 2018)

Fuente: Elaboración propia con resultados de entrevistas.
Tabla 1.18 Análisis de Brecha Bombas Centrífugas Horizontales OH2 S-6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>50%</td>
<td>140</td>
<td>300</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Medio</td>
<td>53%</td>
<td>386</td>
<td>300</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Bajo</td>
<td>53%</td>
<td>468</td>
<td>300</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Se tiene un 5% de GIN en la fabricación de Bombas OH2 S-8 en las diferentes capacidades de rango.

El total de los componentes principales son importados, por lo que sólo otros componentes son adquiridos con proveedores locales para la integración de la bomba.

No se tiene una capacidad de fabricación local.

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda de PEMEX y oferta de las bombas centrífugas horizontales OH2 S-8 muestra una falta de capacidad instalada para atender la demanda estimada conforme a los diferentes rangos.

Gráfica 1.111 Análisis de Brecha de Bombas Centrífugas OH2 S-8 por Rango (2014 - 2018)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>5%</td>
<td>40</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Medio</td>
<td>6%</td>
<td>109</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Bajo</td>
<td>6%</td>
<td>161</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Tabla 1.19 Análisis de Brecha Bombas Centrífugas Horizontales OH2 S-8

Fuente: Elaboración propia con resultados de entrevistas.
OH2 S-9

Gráfica 1.112 85% de GiN Bombas OH2 S-9 Rango Alto

Gráfica 1.113 Capacidad Instalada y Utilizada Bombas OH2 S-9 Rango Alto

Gráfica 1.114 Motivos de Importación por Principales Componentes Bombas OH2 S-9 Rango Alto

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda de PEMEX y oferta de las bombas centrífugas horizontales OH2 S-9 arroja una falta de capacidad instalada para atender la demanda estimada de las bombas con capacidades de rango bajo, donde se concentra principalmente la demanda estimada de PEMEX (Gráfica 1.115).

![Gráfica 1.115 Análisis de Brecha de Bombas Centrífugas OH2 S-9 por Rango (2014 - 2018)](image)

Fuente: Elaboración propia con resultados de entrevistas.

Nota: El triángulo expresa que se tiene capacidad de producción en el rango de capacidad alto.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>85%</td>
<td>0</td>
<td>50</td>
<td>Sin Demanda</td>
</tr>
<tr>
<td>Medio</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Bajo</td>
<td>-</td>
<td>29</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
En el caso de las bombas centrífugas horizontales OH2 con clase de materiales A-8 Rango Alto se obtuvo un 85% de grado de integración nacional, con una capacidad instalada de 50 unidades anuales, señalando que en los años 2010-2013 no se tuvo una producción nacional por falta de demanda.

Fuente: Elaboración propia con resultados de entrevistas.

Gráfica 1.116 85% de GIN en Bombas OH2 A-8 Rango Alto

Gráfica 1.117 Capacidad Instalada y Utilizada Bombas OH2 A-8 Rango Alto

Gráfica 1.118 Motivos de Importación por Principales Componentes Bombas OH2 A-8 Rango Alto

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda de PEMEX y oferta de las bombas centrífugas horizontales OH2 A-8 muestra la falta de capacidad instalada para atender la demanda estimada conforme a los rangos medio y bajo, mismos que aportan la mayor demanda estimada de PEMEX. Se cuenta con una capacidad instalada en el rango alto, sin embargo para este tipo de rango no se tiene demanda de PEMEX en los próximos años.

Gráfica 1.119 Análisis de Brecha de Bombas Centrífugas OH2 A-8 por Rango (2014-2018)

Tabla 1.21 Análisis de Brecha Bombas Centrífugas Horizontales OH2 A-8

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>85%</td>
<td>28</td>
<td>50</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Medio</td>
<td>-</td>
<td>25</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Bajo</td>
<td>-</td>
<td>68</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Nota: El triángulo expresa que se tiene capacidad de producción sólo en el rango de capacidad alto.
• Se obtuvo un 48% en el GIN.
• Se tiene una capacidad instalada de 50 unidades anuales, con una producción anual de 14 unidades en 2013.
• El 100% de la producción se comercializó mediante ventas indirectas a PEMEX, a través de contratistas.

Fuente: Elaboración propia con resultados de entrevistas.
Se obtuvo un 48% en el grado de integración nacional.
Se tiene una capacidad instalada de 50 unidades anuales, con una producción anual de 24 unidades en 2013.
El 100% de la producción se comercializó mediante ventas indirectas a PEMEX, a través de contratistas.

Fuente: Elaboración propia con resultados de entrevistas.
Se obtuvo un 48% en el GIN.
Se tiene una capacidad instalada de 50 unidades anuales, con una producción anual de 2 unidades en 2013.
El 100% de la producción se comercializó mediante ventas indirectas a PEMEX, a través de contratistas.
Dentro de los primordiales motivos para la importación de componentes principales, se destaca el precio, calidad y tiempo de entrega. Para incrementar el GIN se tendría que generar procesos de subcontratación de proveedores nacionales, toda vez que se tienen proveedores nacionales para los componentes principales, con excepción de la flecha.

Gráfica 1.129 Motivos de Importación por Principales Componentes
Bombas VS1 I-2 Rangos Alto, Medio y Bajo

<table>
<thead>
<tr>
<th>Componente</th>
<th>Calidad</th>
<th>Tiempo de Entrega</th>
<th>Suministro Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodamientos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flecha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partes Carcasa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcasa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

El análisis de brecha entre la demanda de PEMEX y oferta de las bombas centrífugas verticalmente suspendidas VS1 I-2 muestran una capacidad instalada y utilizada suficiente para atender la demanda estimada de las bombas con rangos de capacidades alto, medio y bajo (Gráfica 1.130).
Tabla 1.22 Análisis de Brecha Bombas Centrífugas Verticalmente Suspendidas VS1 I-2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>48%</td>
<td>6</td>
<td>50</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Medio</td>
<td>48%</td>
<td>10</td>
<td>50</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Bajo</td>
<td>48%</td>
<td>0</td>
<td>50</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Gráfica 1.130 Análisis de Brecha de Bombas Centrífugas VS1 I-2 por Rango (2014 - 2018)
Se obtuvo un 4% en el GIN.
Se tiene una capacidad instalada de producción de 100 unidades anuales, con una producción anual de 14 unidades en 2013.
El 60% de la producción se comercializó a través de ventas directas a PEMEX, y 40% en ventas indirectas, mediante contratistas.

Fuente: Elaboración propia con resultados de entrevistas.
VS4 S-6 Rango Medio

- Se obtuvo un 4% en el grado de integración nacional.
- Se tiene una capacidad instalada de producción de 100 unidades anuales, con una producción anual de 20 unidades en 2013.
- El 64% de la producción se comercializó a través de ventas directas a PEMEX, y 36% en ventas indirectas, a través de contratistas.

Fuente: Elaboración propia con resultados de entrevistas.
VS4 S-6 Rango Bajo

- Se obtuvo un 2% en el grado de integración nacional.
- Se tiene una capacidad instalada de producción de 100 unidades anuales, con una producción anual de 14 unidades en 2013.
- El 79% de la producción se comercializó a través de ventas directas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.
Dentro de los principales motivos para la importación de componentes principales, se destaca la estrategia de suministro global de las empresas fabricantes que importan bombas y componentes de otras localidades, toda vez que si existen proveedores nacionales, asociados a factores como precio, calidad y tiempo de entrega. Para incrementar el GIN se tendría que desarrollar capacidades internas y/o subcontratar de proveedores nacionales en todos los componentes principales (Gráfica 1.140).

Gráfica 1.140 Motivos de Importación por Principales Componentes

Bombas VS4 S-6 Rango Alto, Medio y Bajo

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda de PEMEX y oferta de las bombas centrífugas verticalmente suspendidas VS4 S-6 muestra una capacidad instalada y utilizada suficiente para atender la demanda estimada conforme a los rangos alto, medio y bajo (gráfica 1.141).

Gráfica 1.141 Análisis de Brecha de Bombas Centrífugas VS4 S-6 por Rango (2014 - 2018)

Tabla 1.23. Análisis de Brecha Bombas Centrífugas Verticalmente Suspendidas VS4 S-6

<table>
<thead>
<tr>
<th>Rango</th>
<th>GI N</th>
<th>Demanda (2014-2018)</th>
<th>Capacidad Instalada Anual</th>
<th>Análisis de Brecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>4%</td>
<td>0</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Medio</td>
<td>4%</td>
<td>118</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Bajo</td>
<td>2%</td>
<td>28</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Bombas de Émbolo

Bombas de Émbolo – Simplex

- Se obtuvo un 92% en el grado de integración nacional.
- Se tiene una capacidad instalada de producción de 15 unidades anuales, con una producción anual de 4 unidades en 2013.
- El 100% de la producción se comercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.
Gráfica 1.145 Motivos de Importación por Principales Componentes Bombas Émbolo Simplex Rango Alto

Fuente: Elaboración propia con resultados de entrevistas.

Gráfica 1.146 95% de GIN en Bombas de Émbolo Simplex Rango Medio

Fuente: Elaboración propia con resultados de entrevistas.

Gráfica 1.147 Capacidad Instalada y Utilizada en Bombas de Émbolo Simplex Rango Medio

Fuente: Elaboración propia con resultados de entrevistas.
- Se obtuvo un 95% en el grado de integración nacional.
- Se tiene una capacidad instalada de producción de 15 unidades anuales, con una producción anual de 4 unidades en 2013.
- El 100% de la producción se comercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.

Gráfica 1.148 Destino de Producción Bombas de Émbolo Simplex Rango Medio

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ventas Indirectas Pemex</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Gráfica 1.149 92% de GIN en Bombas de Émbolo Simplex Rango Bajo

- Ci: cilindro
- E: émbolo
- V: válvulas
- C: cigüeñal
- O: otros

<table>
<thead>
<tr>
<th>Porcentaje</th>
<th>0%</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Nacional</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>% Importación</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Gráfica 1.150 Capacidad Instalada y Utilizada en Bombas de Émbolo Simplex Rango Bajo

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Instalada</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Utilizada</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Disponible</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
• Se obtuvo un 92\% en el grado de integración nacional.
• Se tiene una capacidad instalada de producción de 15 unidades anuales, con una producción anual de 4 unidades en 2013.
• El 100\% de la producción se commercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.

Gráfica 1.151 Destino de Producción
Bombas de Émbolo Simplex Rango Bajo

<table>
<thead>
<tr>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción</td>
</tr>
<tr>
<td>Ventas Indirectas Pemex</td>
</tr>
</tbody>
</table>

Gráfica 1.152 Motivos de Importación por Principales Componentes
Bombas Émbolo Simplex Rango Medio y Bajo

<table>
<thead>
<tr>
<th>Componente</th>
<th>Calidad</th>
<th>Certificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émbolo</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cilindro</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
El análisis de brecha entre la demanda y oferta de las bombas de tipo de Émbolo – Simplex, muestran una capacidad instalada insuficiente para satisfacer la demanda estimada de PEMEX en los rangos alto y medio (Gráfica 1.153).

Fuente: Elaboración propia con resultados de entrevistas.

Tabla 1.24. Análisis de Brecha Bombas Reciprocantes de Tipo Émbolo – Simplex

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>92%</td>
<td>24</td>
<td>15</td>
<td>Capacidad Instalada Insuficiente</td>
</tr>
<tr>
<td>Medio</td>
<td>95%</td>
<td>84</td>
<td>15</td>
<td>Capacidad Instalada Insuficiente</td>
</tr>
<tr>
<td>Bajo</td>
<td>92%</td>
<td>0</td>
<td>15</td>
<td>Sin Demanda</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Émbolo Dúplex Rango Bajo

- Se obtuvo un 83% en el grado de integración nacional.
- Se tiene una capacidad instalada de producción de 5 unidades anuales, con una producción anual de 4 unidades en 2013.
- El 100% de la producción se comercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda y oferta de las bombas de tipo de Émbolo – Duplex, muestra una capacidad instalada insuficiente para atender la demanda estimada correspondiente al rango medio, donde se concentra la mayor demanda en los próximos años. Se cuenta con una capacidad instalada y utilizada en el rango bajo, sin embargo para este tipo no se tiene una demanda estimada de PEMEX en los próximos años.

Fuente: Elaboración propia con resultados de entrevistas.
Gráfica 1.158 Análisis de Brecha Bombas Émbolo Duplex (2014 - 2018)

Demanda
Oferta
Capacidad Instalada

Fuente: Elaboración propia con resultados de entrevistas.
Nota: El triángulo expresa que se tiene capacidad de producción en el rango de capacidad bajo.

Tabla 1.25. Análisis de Brecha Bombas Reciprocantes de Tipo Émbolo – Duplex Rango Bajo

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>-</td>
<td>0</td>
<td></td>
<td>Sin Demanda</td>
</tr>
<tr>
<td>Medio</td>
<td>-</td>
<td>18</td>
<td></td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Bajo</td>
<td>82%</td>
<td>0</td>
<td>5</td>
<td>Sin Demanda</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
• 100% en el grado de integración nacional.
• Se tiene una capacidad instalada de producción de 100 unidades anuales, con una producción anual de 15 unidades en 2013.
• El 100% de la producción se comercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.
• 100% en el grado de integración nacional.
• Se tiene una capacidad instalada de producción de 100 unidades anuales, con una producción anual de 15 unidades en 2013.
• El 100% de la producción se comercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.
• 100% en el grado de integración nacional.
• Se tiene una capacidad instalada de producción de 100 unidades anuales, con una producción anual de 15 unidades en 2013.
• El 100% de la producción se comercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda y oferta de las bombas de Tornillos Gemelos, muestra una capacidad instalada (100 unidades anuales) suficiente para atender la demanda correspondiente a los rangos alto, medio y bajo en los próximos años (Gráfica 1.168).

Fuente: Elaboración propia con resultados de entrevistas.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>100%</td>
<td>5</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Medio</td>
<td>100%</td>
<td>20</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
<tr>
<td>Bajo</td>
<td>100%</td>
<td>16</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Tres Tornillos

• 100% en el grado de integración nacional.
• Se tiene una capacidad instalada de producción de 100 unidades anuales, con una producción anual de 10 unidades en 2013.
• El 100% de la producción se comercializó a través de ventas indirectas a PEMEX.

Fuente: Elaboración propia con resultados de entrevistas.
El análisis entre la demanda y oferta de las bombas de Tres Tornillos, muestra una capacidad instalada de producción (100 unidades anuales) suficiente para atender la demanda estimada concentrada en los rangos alto y bajo (Gráfica 1.172).

Fuente: Elaboración propia con resultados de entrevistas.

Tabla 1.27 Análisis de Brecha Bombas Rotatorias de Tipo Tres Tornillos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>-</td>
<td>12</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Medio</td>
<td>-</td>
<td>15</td>
<td>0</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Bajo</td>
<td>100%</td>
<td>271</td>
<td>100</td>
<td>Capacidad Instalada Suficiente</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
IDENTIFICACIÓN DE RETOS Y OPORTUNIDADES

El presente apartado se dirige a realizar un análisis de los retos y oportunidades para mejorar la competitividad de las empresas nacionales fabricantes de bombas.

a) Matriz de Bombas con Oferta Nacional

A continuación se presenta la matriz de familias de bombas por tipo y material de fabricación en las que se determinó su grado de integración nacional, análisis de brecha, datos de demanda estimada 2014-2018 y su capacidad instalada.

Bombas Centrífugas

La industria nacional tiene capacidades para producir seis bombas centrífugas para la industria petrolera en sus diferentes rangos de capacidades de gasto. Por lo que, podría atender el 56% de la demanda estimada de PEMEX en este tipo de bombas, lo que representaría la producción de 1,128 unidades.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OH2</td>
<td>S-4</td>
<td>Alto</td>
<td>-</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>OH2</td>
<td>S-4</td>
<td>Medio</td>
<td>100%</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>S-4</td>
<td>Bajo</td>
<td>-</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>OH2</td>
<td>S-5</td>
<td>Alto</td>
<td>85%</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>S-5</td>
<td>Medio</td>
<td>-</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>OH2</td>
<td>S-5</td>
<td>Bajo</td>
<td>-</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>OH2</td>
<td>S-6</td>
<td>Alto</td>
<td>50%</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>S-6</td>
<td>Medio</td>
<td>53%</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>S-6</td>
<td>Bajo</td>
<td>53%</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>S-8</td>
<td>Alto</td>
<td>5%</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>OH2</td>
<td>S-8</td>
<td>Medio</td>
<td>6%</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>OH2</td>
<td>S-8</td>
<td>Bajo</td>
<td>6%</td>
<td>161</td>
<td>161</td>
</tr>
<tr>
<td>OH2</td>
<td>S-9</td>
<td>Alto</td>
<td>85%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>S-9</td>
<td>Medio</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OH2</td>
<td>S-9</td>
<td>Bajo</td>
<td>-</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>OH2</td>
<td>A-8</td>
<td>Alto</td>
<td>85%</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>OH2</td>
<td>A-8</td>
<td>Medio</td>
<td>-</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>OH2</td>
<td>A-8</td>
<td>Bajo</td>
<td>-</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>2,010</td>
<td>882</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
OH2 S-4

Áreas de Oportunidad

La oferta nacional de las bombas centrífugas OH2 con clase de materiales S-4 Rango Medio muestra un 100% en su grado de integración nacional, es decir, se fabrican nacionalmente todos los componentes de la bomba.

Se cuenta con una capacidad instalada de 100 unidades anuales, con una capacidad utilizada de 42 unidades en 2013, de los cuales 95% de la producción se destina a procesos de exportación y 5% a ventas indirectas hacia PEMEX. Dada la capacidad instalada se tendría que incrementar la producción de bombas con capacidades en el rango medio para atender la demanda de PEMEX, manteniendo fija la producción de bombas para mercados de exportación. Asimismo, se deberá desarrollar una capacidad para la fabricación de bombas con capacidades de rango bajo, donde se concentra principalmente los requerimientos de compra de PEMEX, mediante la dotación de activos fijos, maquinaria y equipo, entre otros factores productivos, conforme a la siguiente Tabla 1.29.

| Tabla 1.29 Áreas de Oportunidad en la Fabricación de Bombas Centrífugas Horizontales OH2 S-4 |
|----------------------------------|---|---|---|---|---|
| | 2014 | 2015 | 2016 | 2017 | 2018 |
| **Producción Requerida** | Medio | Bajo | Medio | Bajo | Medio | Bajo | Bajo | Bajo |
| | 62 | 46 | 63 | 46 | 60 | 56 | 25 | 2 |
| **Tasa Crecimiento** | 24% | 100%| 2% | 2% | 2% | 5% | 3% | 1% | 0% |
| **Exportación** | 30 | 0 | 52 | 0 | 48 | 0 | 0 | 0 |
| **Ventas PEMEX** | 32 | 46 | 11 | 46 | 13 | 56 | 25 | 2 |

Fuente: Elaboración propia con resultados de entrevistas.

Nota: La tasa de crecimiento de la producción se calcula conforme a la producción del año inmediato anterior.

OH2 S-5

Áreas de Oportunidad

La oferta nacional de bombas centrífugas OH2 con clase de materiales S-5 Rango Alto muestra un 83% en su GIN, superior al umbral requerido para considerarlo como un bien nacional. Para incrementar el GIN se tendrían que desarrollar capacidades internas y/o subcontractar proveedores nacionales de los componentes principales como flecha y caja de rodamientos.
Se cuenta con una capacidad instalada de 100 unidades anuales para bombas con capacidades de rango alto, subutilizada por la falta de demanda, por lo que se tendría que generar una producción para atender la demanda de PEMEX, así como desarrollar capacidades de producción de bombas con capacidades de rango medio, a través de la adquisición de maquinaria y equipo, conforme a la siguiente Tabla 1.30.

<table>
<thead>
<tr>
<th>Tabla 1.30 Áreas de Oportunidad en la Fabricación de Bombas Centrífugas Horizontales OH2 S-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
</tr>
<tr>
<td>Medio</td>
</tr>
<tr>
<td>Producción Requerida</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
</tr>
<tr>
<td>Exportación</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Nota: La tasa de crecimiento de la producción se calcula conforme a la producción del año inmediato anterior.

OH2 S-6

Áreas de Oportunidad

La oferta nacional de bombas centrífugas OH2 con clase de materiales S-6 en sus diferentes rangos muestra un 53% en su GIN, inferior al umbral requerido para considerarlo como un bien nacional. Dentro de los principales motivos para la importación de componentes principales, se destaca la estrategia de suministro global de las empresas fabricantes que importan componentes de otras localidades, así también factores como el precio, calidad del producto y tiempo de entrega. Para incrementar el GIN se tendrían que desarrollar capacidades internas y/o subcontratar proveedores nacionales de los componentes principales en la carcasa y partes de la carcasa.

Se cuenta con una capacidad instalada de 300 unidades anuales para bombas con las capacidades especificadas en los tres rangos, por lo que se tendría que generar una producción adicional para atender la demanda estimada de PEMEX, manteniendo fijo el número de unidades para mercados de exportación, conforme a la siguiente Tabla 1.31.
Tabla 1.3.1 Áreas de Oportunidad en la Fabricación de Bombas Centrífugas Horizontales OH2 S-6

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th></th>
<th></th>
<th>2015</th>
<th></th>
<th></th>
<th>2016</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>200</td>
<td>281</td>
<td>362</td>
<td>307</td>
<td>495</td>
<td>529</td>
<td>286</td>
<td>398</td>
<td>474</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>18%</td>
<td>12%</td>
<td>21%</td>
<td>54%</td>
<td>76%</td>
<td>46%</td>
<td>-7%</td>
<td>-20%</td>
<td>-10%</td>
</tr>
<tr>
<td>Exportación</td>
<td>120</td>
<td>169</td>
<td>217</td>
<td>184</td>
<td>297</td>
<td>317</td>
<td>172</td>
<td>239</td>
<td>284</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>80</td>
<td>112</td>
<td>145</td>
<td>123</td>
<td>198</td>
<td>212</td>
<td>114</td>
<td>159</td>
<td>190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th></th>
<th></th>
<th>2018</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>263</td>
<td>378</td>
<td>437</td>
<td>254</td>
<td>364</td>
<td>366</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>-8%</td>
<td>-5%</td>
<td>-8%</td>
<td>-3%</td>
<td>-4%</td>
<td>-16%</td>
</tr>
<tr>
<td>Exportación</td>
<td>158</td>
<td>227</td>
<td>262</td>
<td>152</td>
<td>218</td>
<td>220</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>105</td>
<td>151</td>
<td>175</td>
<td>102</td>
<td>146</td>
<td>146</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Nota: La tasa de crecimiento de la producción se calcula conforme a la producción requerida el año inmediato anterior.

OH2 S-8

Áreas de Oportunidad

La oferta de bombas centrífugas OH2 con clase de materiales S-8 en sus diferentes rangos muestra un 5% en su GIN, inferior al umbral requerido para considerarlo como un bien nacional.

En términos generales, se puede plantear que no se tiene una capacidad instalada para la fabricación nacional de este tipo de bombas. Las bombas se importan completas o por sus componentes principales, y en nuestro país sólo se realiza la integración de la bomba o del sistema de bomba, conforme a los requerimientos y especificaciones que solicita PEMEX.

Uno de los principales motivos de la importación de los componentes principales de la bomba, se debe a la integración de cadenas globales de suministro, donde algunas empresas, especialmente con capital foráneo, desarrollan empresas filiales en diferentes países, aprovechando las ventajas competitivas en términos de su mercado interno, costo de recursos humanos y ubicación geográfica, entre otros, y se especializan en la producción de diferentes tipos de bombas, para posteriormente comercializarlas hacia los mercados demandantes.
OH2 S-9

Áreas de Oportunidad
La oferta de bombas centrífugas OH2 con clase de materiales S-9 Rango Alto muestra un 85% en su GIN, superior al umbral requerido para considerarlo como un bien nacional. Se cuenta con una capacidad instalada para la producción de 50 unidades anuales de bombas con capacidades de rango alto, subutilizada del 2010-2013.

Para atender la demanda de PEMEX, se tendría que adquirir maquinaria y equipo para reconvertir la producción hacia bombas con capacidades de rango bajo, donde se concentra el total de la demanda de PEMEX, conforme a la siguiente Tabla 1.32.

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción Requerida</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Bajo</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>100%</td>
<td>1166%</td>
<td>0%</td>
<td>-92%</td>
<td>0%</td>
</tr>
<tr>
<td>Exportación</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>1</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Nota: La tasa de crecimiento de la producción se calcula conforme a la producción requerida el año inmediato anterior.

OH2 A-8

Áreas de Oportunidad
La oferta de las bombas centrífugas OH2 con clase de materiales A-8 en las diferentes capacidades de rango muestra un 83% de GIN, superior al umbral requerido para considerarlo como un bien nacional.

Se cuenta con una capacidad instalada subutilizada de 50 unidades anuales para bombas con capacidades de rango alto, por lo que se tendría que retomar la producción para atender la demanda de PEMEX, así como desarrollar capacidades de producción, a través de la compra de maquinaria y equipo para la fabricación de bombas con capacidades de rango bajo en los próximos años, conforme a la siguiente Tabla 1.33.
Áreas de Oportunidad en la Fabricación de Bombas Centrífugas Horizontales OH2

<table>
<thead>
<tr>
<th>Producción Requerida</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>4</td>
<td>15</td>
<td>6</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>Bajo</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tasa Crecimiento</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>100%</td>
<td>100%</td>
<td>50%</td>
<td>87%</td>
<td>67%</td>
</tr>
<tr>
<td>Bajo</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exportación</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bajo</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventas PEMEX</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>4</td>
<td>15</td>
<td>6</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>Bajo</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Nota: La tasa de crecimiento de la producción se calcula conforme a la producción del año inmediato anterior.

Bombas VS

En el caso de las bombas centrífugas verticalmente suspendidas, la industria nacional tiene capacidad para producir dos bombas centrífugas en sus diferentes rangos de capacidades de gasto. En este sentido, podría atender el 100% de la demanda estimada de PEMEX de este tipo de bombas, lo que representaría la producción de 162 unidades.

Tabla 1.34 Matriz Resumen de la Oferta Nacional por Tipo de Bomba (VS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2</td>
<td>Alto</td>
<td>48%</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>I-2</td>
<td>Medio</td>
<td>48%</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>I-2</td>
<td>Bajo</td>
<td>48%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S-6</td>
<td>Alto</td>
<td>4%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S-6</td>
<td>Medio</td>
<td>4%</td>
<td>118</td>
<td>0</td>
</tr>
<tr>
<td>S-6</td>
<td>Bajo</td>
<td>2%</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

VS I-2

Áreas de Oportunidad

La oferta de las bombas centrífugas VSI con clase de materiales 1-2 en las diferentes capacidades de rango muestra un 48% de GIN, inferior al umbral requerido para considerarlo como un bien nacional.
Se cuenta con una capacidad instalada limitada de 50 unidades anuales para bombas con los tres rangos de capacidades de gasto, por lo que se tendría que incrementar para atender la demanda de PEMEX, conforme a la siguiente Tabla 1.35.

<table>
<thead>
<tr>
<th>Tabla 1.35 Áreas de Oportunidad en la Fabricación de Bombas Centrífugas Horizontales VS1 I-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>30%</td>
<td>48%</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>7%</td>
<td>0%</td>
</tr>
<tr>
<td>Exportación</td>
<td>28%</td>
<td>48%</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto</td>
<td>Medio</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>28%</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>0%</td>
</tr>
<tr>
<td>Exportación</td>
<td>28%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Nota: La tasa de crecimiento de la producción se calcula conforme a la producción del año inmediato anterior.

VS4 S-6

Áreas de Oportunidad

La oferta de las bombas centrífugas VS4 con clase de materiales S-6 en las diferentes capacidades de rango muestra un 48% de GIN, inferior al umbral requerido para considerarlo como un bien nacional.

Se cuenta con una capacidad instalada de 50 unidades anuales para bombas con los tres rangos de capacidades, por lo que se tendría que incrementar la producción en bombas con capacidades de rango medio para atender la demanda de PEMEX, conforme a la siguiente Tabla 1.36.
Tabla 1.36 Áreas de Oportunidad en la Fabricación de Bombas Centrífugas Horizontales VS4 S-6

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medio</td>
<td>Bajo</td>
<td>Medio</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>30</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>0%</td>
<td>15%</td>
<td>170%</td>
</tr>
<tr>
<td>Exportación</td>
<td>30</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>0</td>
<td>3</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medio</td>
<td>Bajo</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>67</td>
<td>22</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>-15%</td>
<td>-44%</td>
</tr>
<tr>
<td>Exportación</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Nota: La tasa de crecimiento de la producción se calcula conforme a la producción requerida el año inmediato anterior.

Bombas de Émbolo

Respecto a las bombas de émbolo, la oferta nacional tiene capacidades para producir dos bombas, sin embargo en los rangos de capacidades de gasto demandados por PEMEX no cuenta con capacidad instalada. En este sentido, no se tienen las capacidades para atender el 100% de la demanda estimada de PEMEX en este tipo de bombas.

Tabla 1.37 Matriz Resumen de la Oferta Nacional de Bombas de Émbolo

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Émbolo</td>
<td>Simplex</td>
<td>Alto</td>
<td>92%</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Simplex</td>
<td>Medio</td>
<td>95%</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Simplex</td>
<td>Bajo</td>
<td>92%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Duplex</td>
<td>Alto</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Duplex</td>
<td>Medio</td>
<td>-</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Duplex</td>
<td>Bajo</td>
<td>82%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>126</td>
<td>126</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Bombas de Émbolo – Simplex
Áreas de Oportunidad
La oferta de las bombas de émbolo simplex muestra un GIN del 92%, superior al umbral requerido para considerarlo como un bien nacional. Se cuenta con una capacidad instalada de 15 unidades anuales para bombas con los tres rangos de capacidades, por lo que se tendría que incrementar la producción para atender la demanda de PEMEX, conforme a la siguiente Tabla 1.38.

<table>
<thead>
<tr>
<th>Año</th>
<th>Rango</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Alto</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>10</td>
<td>18</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>0%</td>
<td>80%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Exportación</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>10</td>
<td>18</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Nota: La tasa de crecimiento de la producción se calcula conforme a la producción del año inmediato anterior.

Bombas de Émbolo – Duplex
Áreas de Oportunidad
La oferta de bombas de émbolo dúplex muestra un 83% de GIN, superior al umbral requerido para considerarlo como un bien nacional. Se cuenta con una capacidad instalada de 5 unidades anuales para bombas con el rango bajo, sin embargo no se tiene una demanda para este tipo de bomba, por lo que se tendría que reconvertir tecnológicamente la capacidad de producción hacia bombas de capacidad de rango medio para atender la demanda de PEMEX, conforme a la siguiente Tabla 1.39.
Tabla 1.39 Áreas de Oportunidad en la Fabricación de Bombas de Émbolo Duplex

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
<td>Medio</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>0</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>0%</td>
<td>100%</td>
<td>-40%</td>
<td>-67%</td>
<td>800%</td>
</tr>
<tr>
<td>Exportación</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>0</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Nota: La tasa de crecimiento de la producción se calcula conforme a la producción requerida el año inmediato anterior.

Bombas de Tornillos

En el caso de las bombas de tornillos, la oferta nacional tiene capacidades para producir dos bombas. En este sentido, se tienen capacidades para atender el 92% de la demanda estimada de PEMEX.

Tabla 1.40 Matriz Resumen de la Oferta Nacional de Bombas de Émbolo

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornillos</td>
<td>Gemelos</td>
<td>Alto</td>
<td>100%</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Gemelos</td>
<td>Medio</td>
<td>100%</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Gemelos</td>
<td>Bajo</td>
<td>100%</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Tres Tornillos</td>
<td>Alto</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Tres Tornillos</td>
<td>Medio</td>
<td>-</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Tres Tornillos</td>
<td>Bajo</td>
<td>100%</td>
<td>271</td>
<td>271</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>339</td>
<td>27</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.

Tres Tornillos

Áreas de Oportunidad

La oferta de bombas de tres tornillos muestra un 100% en su GIN, superior al umbral requerido para considerarlo como un bien nacional. Se cuenta con una capacidad instalada de 100 unidades anuales para bombas con los tres tipos de rangos, por lo que se tendría que incrementar la producción para atender la demanda de PEMEX en los rangos de capacidades alto y bajo, conforme a la siguiente Tabla 1.41.
Tabla 1.41 Áreas de Oportunidad en la Fabricación de Bombas de Tres Tornillos

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Alto</td>
<td>Medio</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>18</td>
<td>18</td>
<td>68</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>20%</td>
<td>20%</td>
<td>353%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Exportación</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>18</td>
<td>18</td>
<td>68</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Nota: La tasa de crecimiento de la producción se calcula conforme a la producción requerida el año inmediato anterior.

Tornillos Gemelos

Áreas de Oportunidad
La oferta de las bombas de tornillos gemelos muestra un 100% en su GIN. Se cuenta con una capacidad instalada de 100 unidades anuales para bombas con los tres tipos de rangos, por lo que se tendría que incrementar la capacidad de producción conforme a la siguiente Tabla 1.42.

Tabla 1.42 Áreas de Oportunidad en la Fabricación de Bombas de Tornillos Gemelos

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Alto</td>
<td>Medio</td>
</tr>
<tr>
<td>Producción Requerida</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Tasa Crecimiento</td>
<td>0%</td>
<td>13%</td>
<td>27%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Exportación</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ventas PEMEX</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con resultados de entrevistas.
Nota: La tasa de crecimiento de la producción se calcula conforme a la producción requerida el año inmediato anterior.
b) Resumen de Bombas con Oferta Nacional

Del las bombas para la industria petrolera demandadas por un total de 7,652 unidades. La producción nacional tiene la capacidad instalada de atender la demanda de 1,602 bombas, lo que representa el 21% de la demanda total de bombas (Tabla 1.43).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OH2</td>
<td>S-4</td>
<td>Medio</td>
<td>100%</td>
<td>30</td>
</tr>
<tr>
<td>OH2</td>
<td>S-5</td>
<td>Alto</td>
<td>85%</td>
<td>76</td>
</tr>
<tr>
<td>OH2</td>
<td>S-6</td>
<td>Alto</td>
<td>50%</td>
<td>140</td>
</tr>
<tr>
<td>OH2</td>
<td>S-6</td>
<td>Medio</td>
<td>53%</td>
<td>386</td>
</tr>
<tr>
<td>OH2</td>
<td>S-6</td>
<td>Bajo</td>
<td>53%</td>
<td>468</td>
</tr>
<tr>
<td>OH2</td>
<td>A-8</td>
<td>Alto</td>
<td>85%</td>
<td>28</td>
</tr>
<tr>
<td>VS1</td>
<td>I-2</td>
<td>Alto</td>
<td>48%</td>
<td>6</td>
</tr>
<tr>
<td>VS1</td>
<td>I-2</td>
<td>Medio</td>
<td>48%</td>
<td>10</td>
</tr>
<tr>
<td>VS1</td>
<td>I-2</td>
<td>Bajo</td>
<td>48%</td>
<td>-</td>
</tr>
<tr>
<td>VS4</td>
<td>S-6</td>
<td>Alto</td>
<td>4%</td>
<td>-</td>
</tr>
<tr>
<td>VS4</td>
<td>S-6</td>
<td>Medio</td>
<td>4%</td>
<td>118</td>
</tr>
<tr>
<td>VS4</td>
<td>S-6</td>
<td>Bajo</td>
<td>2%</td>
<td>28</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Gemelos</td>
<td>Alto</td>
<td>100%</td>
<td>5</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Gemelos</td>
<td>Medio</td>
<td>100%</td>
<td>20</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Gemelos</td>
<td>Bajo</td>
<td>100%</td>
<td>16</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Tres Tornillos</td>
<td>Bajo</td>
<td>100%</td>
<td>271</td>
</tr>
<tr>
<td>Totales</td>
<td></td>
<td></td>
<td></td>
<td>1,602</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
Existen tipos de bombas por su rango de capacidad de gasto donde la industria nacional no tiene capacidades de producción desarrolladas, por ejemplo puede tener una capacidad de producción para bombas con una capacidad de gasto bajo, cuando PEMEX está demandando bombas del mismo tipo, pero no cuenta con una capacidad de gasto medio o alto, donde se tendría que realizar una inversión para la adquisición de activos fijos, maquinaria y equipo, capacitación, entre otros factores, para ampliar la capacidad de producción de las empresas (Tabla 1.44).

En el caso de ampliar las capacidades de producción en estos tipos y materiales de bombas, se podría incrementar la cobertura de la demanda estimada de PEMEX en 1,035 unidades, lo que representaría un 14% adicional, a la demanda cubierta por la industria nacional.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OH2</td>
<td>S-4</td>
<td>Alto</td>
<td>-</td>
<td>10</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>S-4</td>
<td>Bajo</td>
<td>-</td>
<td>175</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>S-5</td>
<td>Medio</td>
<td>-</td>
<td>91</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>S-5</td>
<td>Bajo</td>
<td>-</td>
<td>174</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>S-8</td>
<td>Alto</td>
<td>5%</td>
<td>40</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>S-8</td>
<td>Medio</td>
<td>6%</td>
<td>109</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>S-8</td>
<td>Bajo</td>
<td>6%</td>
<td>161</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>S-9</td>
<td>Medio</td>
<td>-</td>
<td>-</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>A-8</td>
<td>Medio</td>
<td>-</td>
<td>25</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>OH2</td>
<td>A-8</td>
<td>Bajo</td>
<td>-</td>
<td>68</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Tres Tornillos</td>
<td>Alto</td>
<td>-</td>
<td>12</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Tornillos</td>
<td>Tres Tornillos</td>
<td>Medio</td>
<td>-</td>
<td>15</td>
<td>Sin Capacidad Instalada</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Simplex</td>
<td>Alto</td>
<td>92%</td>
<td>24</td>
<td>Capacidad Instalada Insuficiente</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Simplex</td>
<td>Medio</td>
<td>95%</td>
<td>84</td>
<td>Capacidad Instalada Insuficiente</td>
</tr>
<tr>
<td>Émbolo</td>
<td>Duplex</td>
<td>Medio</td>
<td>-</td>
<td>18</td>
<td>Sin Capacidad Instalada</td>
</tr>
</tbody>
</table>

Total: 1,035

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
c) Matriz por Bombas sin Oferta Nacional

Las siguientes tablas muestran las matrices con los tipos y materiales de bombas para las cuales no se identificó una producción nacional. Es importante señalar que sólo una empresa grande proveyó información de los tipos de bombas que fabrica, por lo que existe la posibilidad de que se tengan desarrolladas mayores capacidades de producción para atender la demanda no observada.

Bombas Centrífugas

Para las bombas centrífugas horizontales (BB) no se registró una fabricación nacional para atender la demanda de PEMEX para este tipo de bombas del orden de 763 unidades en el periodo 2014-2018. A continuación se presentan las tablas, que reflejan la demanda no atendida por la industria, tanto de adquisiciones como para nuevos proyectos de inversión.

Tabla 1.45 Matriz de Bombas Centrífugas Horizontales BB1 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-8</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C-6</td>
<td>-</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Carcasa: A216 Gr WCB; Impulsor: ASTM B62; Flecha: AISI 4140</td>
<td>35</td>
<td>122</td>
<td>157</td>
</tr>
<tr>
<td>I-2</td>
<td>20</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>S-1</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>S-6</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Totales</td>
<td>65</td>
<td>142</td>
<td>207</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.46 Matriz de Bombas Centrífugas Horizontales BB2 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-8</td>
<td>-</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>C-6</td>
<td>-</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>S-1</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>S-5</td>
<td>-</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>S-6</td>
<td>-</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>S-8</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S-9</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Totales</td>
<td>-</td>
<td>178</td>
<td>178</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
Tabla 1.47 Matriz de Bombas Centrífugas Horizontales BB3 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-8</td>
<td>-</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>C-6</td>
<td>20</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>S-1</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S-5</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S-6</td>
<td>15</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>S-6</td>
<td>-</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>S-8</td>
<td>-</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>185</td>
<td>220</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.48 Matriz de Bombas Centrífugas Horizontales BB5 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>-</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>S-5</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>S-6</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>S-8</td>
<td>-</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Totales</td>
<td>-</td>
<td>158</td>
<td>158</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Para los siguientes tipos y materiales de bombas centrífugas horizontales (OH) no se registró una fabricación nacional, por lo que la industria local entrevistada no tiene la producción para atender la demanda de PEMEX para este tipo de bombas del orden de 1,265 unidades en el 2014-2018. A continuación se presentan las tablas, con la demanda no atendida por la industria por tipo y material de fabricación, tanto de adquisiciones como para nuevos proyectos de inversión.

Tabla 1.49 Matriz de Bombas Centrífugas Horizontales OH1 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-8</td>
<td>15</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>C-6</td>
<td>35</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>I-1</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>I-2</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>S-1</td>
<td>-</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>S-5</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S-6</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>S-8</td>
<td>-</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Totales</td>
<td>50</td>
<td>68</td>
<td>118</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
Tabla 1.50 Matriz de Bombas Centrífugas Horizontales OH2 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C-6</td>
<td>75</td>
<td>135</td>
<td>210</td>
</tr>
<tr>
<td>D-1</td>
<td>10</td>
<td>167</td>
<td>177</td>
</tr>
<tr>
<td>I-2</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>S-1</td>
<td>10</td>
<td>135</td>
<td>145</td>
</tr>
<tr>
<td>S-3</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total general</td>
<td>105</td>
<td>447</td>
<td>552</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.51 Matriz de Bombas Centrífugas Horizontales OH5 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>C-6</td>
<td>-</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Totales</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.52 Matriz de Bombas Centrífugas Horizontales OH6 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-8</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Totales</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
Tabla 1.53 Matriz de Otras Bombas Centrífugas sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Inversión</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-8</td>
<td>-</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Carcasa: 13 Cromo; Impulsor: 13 Cromo; Flecha: ASTM A276 410</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Carcasa: 316 SS; Impulsor: 316 SS; Flecha: 316 SS</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Carcasa: 316 SS; Impulsor: 316 SS; Flecha: AISI 4140</td>
<td>-</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Carcasa: A216 Gr WCB; Impulsor: ASTM B62; Flecha: AISI 4140</td>
<td>-</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Carcasa: Acero al carbono; Impulsor: Ni resist; Flecha: Monel</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Carcasa: ASTM A536; Impulsor: ASTM A531 CF8M</td>
<td>-</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Carcasa: Hierro ductil; Impulsor: 316 SS; Flecha: AISI 4140</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Carcasa: Ni-Al Bronce; Impulsor: Ni-Al Bronce; Flecha: AISI 4140</td>
<td>-</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Titanio ASTM B 265</td>
<td>-</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Totales</td>
<td>-</td>
<td>292</td>
<td>292</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.54 Matriz de Bombas Centrífugas Verticalmente Suspendidas VS1 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-8</td>
<td>20</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>D-1</td>
<td>-</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Totales</td>
<td>20</td>
<td>28</td>
<td>48</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.55 Matriz de Bombas Centrífugas Verticalmente Suspendidas VS sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-6</td>
<td>-</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Totales</td>
<td>-</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
Tabla 1.56 Matriz de Bombas Centrífugas Verticalmente Suspendidas VS4 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-8</td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>C-6</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D-1</td>
<td>10</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>S-1</td>
<td></td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>S-4</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S-5</td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>S-8</td>
<td></td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Totales</td>
<td>10</td>
<td>137</td>
<td>133</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.57 Matriz de Bombas Centrífugas Verticalmente Suspendidas VS5 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-6</td>
<td>25</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>S-6</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>S-6</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S-8</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>4</td>
<td>49</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Tabla 1.58 Matriz de Bombas Centrífugas Verticalmente Suspendidas VS6 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-6</td>
<td></td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
Tabla 1.59 Matriz de Bombas Centrífugas Verticalmente Suspendidas VS7 sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-6</td>
<td>-</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Bombas de Desplazamiento Positivo

En el caso de las bombas demandadas de desplazamiento positivo del tipo de diaphragma no se registró fabricación nacional, la industria local entrevistada no tiene la producción para atender la demanda de PEMEX para este tipo de bombas del orden de 2,457 unidades en el período 2014-2018. A continuación se presenta la Tabla 1.60 con la demanda no atendida por la industria, tanto de adquisiciones como para nuevos proyectos de inversión.

Tabla 1.60 Matriz de Bombas de Desplazamiento Positivo de Tipo Diaphragma sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaphragma</td>
<td>1,395</td>
<td>834</td>
<td>2,229</td>
</tr>
<tr>
<td>Diaphragma – Duplex</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Diaphragma – Simplex</td>
<td>10</td>
<td>168</td>
<td>178</td>
</tr>
<tr>
<td>Total</td>
<td>1,445</td>
<td>1,012</td>
<td>2,457</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

Bombas Reciprocantes

Áreas de Oportunidad

Para los siguientes tipos y materiales de bombas reciprocantes de tipo émbolo no se registró una fabricación nacional, por lo que la industria local no tiene la capacidad de producción para atender la demanda de PEMEX por 412 unidades en el 2014-2018.

Tabla 1.61 Matriz de Bombas Reciprocantes de Tipo Émbolo sin Producción Nacional

<table>
<thead>
<tr>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Émbolo</td>
<td>340</td>
<td>54</td>
<td>394</td>
</tr>
<tr>
<td>Émbolo - Multiplex</td>
<td>-</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>340</td>
<td>72</td>
<td>412</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.
Bombas Rotatorias
Áreas de Oportunidad
En el caso de las bombas demandadas de desplazamiento positivo del tipo de diafragma no se registró fabricación nacional para atender la demanda de PEMEX para este tipo de bombas del orden de 2,457 unidades en el período 2014-2018.

| Tabla 1.62 Matriz de Bombas Rotatorias de Tipo de Engranes sin Producción Nacional |
|--|----------|----------|-------------------|
| **Tipo** | **Adquisiciones** | **Proyectos** | **Demanda No Atendida** |
| Engranes externos | 10 | - | 10 |
| Engranes internos | 50 | - | 50 |
| **Total** | 60 | - | 60 |

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

En el caso de las bombas demandadas de tipo tornillos diafragma no se registró fabricación nacional para atender la demanda de bombas de tornillo de cavidad progresiva por 34 unidades del 2014-2018.

| Tabla 1.63 Matriz de Bombas Rotatorias de Tipo de Tornillos sin Producción Nacional |
|--|----------|----------|-------------------|
| **Tipo** | **Adquisiciones** | **Proyectos** | **Demanda No Atendida** |
| Cavidad progresiva | - | 34 | 34 |
| **Total** | - | 34 | 34 |

Fuente: Elaboración propia con datos del Modelo de Pronóstico de Demanda de PEMEX.

A continuación se presenta, un cuadro resumen de la demanda estimada no cubierta por la industria nacional de bombas. En general, no se identificaron capacidades de producción para atender la demanda de un total de 5,015 unidades, lo que representa el 66% de la demanda estimada total de PEMEX en el 2014-2018 (Tabla 1.64).
<table>
<thead>
<tr>
<th>Tipo</th>
<th>Demanda No Atendida</th>
<th>% Total Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrífugas (BB)</td>
<td>763</td>
<td>15%</td>
</tr>
<tr>
<td>Centrífugas (OH)</td>
<td>696</td>
<td>14%</td>
</tr>
<tr>
<td>Centrífugas (VS)</td>
<td>301</td>
<td>6%</td>
</tr>
<tr>
<td>Otras Centrífugas</td>
<td>292</td>
<td>6%</td>
</tr>
<tr>
<td>Engranes Internos</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>Engranes Externo</td>
<td>50</td>
<td>1%</td>
</tr>
<tr>
<td>Tornillos Cavidad Progresiva</td>
<td>34</td>
<td>1%</td>
</tr>
<tr>
<td>Diafragma</td>
<td>2,229</td>
<td>44%</td>
</tr>
<tr>
<td>Diafragma Duplex</td>
<td>50</td>
<td>1%</td>
</tr>
<tr>
<td>Diafragma Simplex</td>
<td>178</td>
<td>4%</td>
</tr>
<tr>
<td>Émbolo</td>
<td>394</td>
<td>8%</td>
</tr>
<tr>
<td>Émbolo Multiplex</td>
<td>18</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>5,015</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.

En general, los tipos de bomba donde no se registraron capacidades de producción fueron las centrífugas horizontales (BB), las bombas de engranes, y las bombas de diafragma.
ESTRATEGIAS Y LÍNEAS DE ACCIÓN

a) Estrategias Generales

Resultado del análisis a las empresas fabricantes de bombas que integran el estudio, se identificaron áreas de oportunidad y retos para mejorar su participación como proveedores de PEMEX, e incrementar de forma gradual el grado de integración nacional de su producción de bombas.

Para atender las áreas de oportunidad identificadas, se proponen seis estrategias generales, a las que deberán vincularse líneas de acción específicas para los fabricantes por tipo de bombas, con la finalidad de mejorar la proveeduría a PEMEX e incrementar su grado de integración nacional. A partir de dicho análisis, las estrategias generales son:

I. **Capacitación**
 Los recursos humanos son un elemento crítico en el esfuerzo para contar con una industria competitiva, la ampliación de infraestructura y el desarrollo de tecnología sólo serán efectivos si se cuenta con personal capacitado.

II. **Normas y Certificaciones**
 La adopción de normas y certificaciones requeridas por la industria de bombas petroleras es un elemento crítico para mejorar las capacidades de proveeduría y contar con una industria competitiva.

III. **Adquisición de Infraestructura**
 Esquemas que permitan a la industria nacional la adquisición de activos fijos para mejorar o ampliar su capacidad de producción instalada.

IV. **Innovación y Desarrollo Tecnológico**
 Acciones para identificar y, en su caso, reducir el rezago tecnológico de la industria nacional, por medio de convenios de asimilación y de desarrollo de tecnología propia.

V. **Desarrollo de la Cadena de Valor**
 Identificar las condiciones y la capacidad instalada de la industria nacional; el grado de integración nacional de su producción, así como sus necesidades y las acciones necesarias para incrementar dicha capacidad.
VI. Financiamiento
Esquemas que permitan a la industria nacional superar barreras de entrada a mecanismos de financiamiento, en especial a las PYMES, que faciliten el flujo de recursos financieros y la factibilidad de proyectos de la industria.

b) Estrategias y Líneas de Acción por tipo de Bomba

Las estrategias generales se sustentan en líneas de acción específicas para cada uno de los fabricantes por tipo de bomba. En este sentido, las líneas de acción planteadas para cada rubro deberán contribuir a ampliar la capacidad de la industria nacional, sea alta o potencialmente competitiva, en términos no sólo de ser proveedor de PEMEX, sino de exportar a otros mercados, desarrollar nuevos participantes, promover alianzas entre empresas nacionales y extranjeras, y/o ubicar empresas extranjeras en México con capacidad de producción.

Las estrategias se plantean para tres tipos de casos, donde se requiere fortalecer las capacidades de producción de la industria nacional de bombas:

• Oferta nacional con capacidad de producción y bajo GIN.
• Oferta nacional con oportunidad de desarrollar capacidades de producción.
• Demanda sin capacidad de producción nacional.
Oferta Nacional con Capacidad de Producción y bajo GIN

Para la oferta nacional con capacidad instalada suficiente pero con un GIN inferior al valor para ser considerado como un bien nacional, se muestran en la siguiente Tabla 1.65 los principales hallazgos y motivos para la importación, los componentes susceptibles de fabricación nacional7, y las áreas de oportunidad8 en componentes actualmente importados, conforme a las respuestas de las empresas entrevistadas.

<table>
<thead>
<tr>
<th>OH2 S-6</th>
<th>Alta integración con cadenas de suministro global (GIN 53%)</th>
<th>Integración con cadenas de suministro globales</th>
<th>Carcasa (Acero al Carbono)</th>
<th>Partes de carcasa (12% Cromo)</th>
<th>Impulsor (12% Cromo)</th>
<th>Flecha (4140 Acero Aleación)</th>
<th>Caja de rodamientos (A216 GR WCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS1 I-2</td>
<td>Alta integración con cadenas de suministro global (GIN 48%)</td>
<td>Calidad</td>
<td>Carcasa (Hierro Fundido)</td>
<td>Partes de carcasa (Bronce)</td>
<td>Impulsor (Bronce)</td>
<td>Flecha (Acero al Carbono)</td>
<td></td>
</tr>
<tr>
<td>VS4 S-6</td>
<td>Alta integración con cadenas de suministro global (GIN 4%)</td>
<td>Calidad</td>
<td>Carcasa (Acero al Carbono)</td>
<td>Partes de carcasa (12% Cromo)</td>
<td>Impulsor (12% Cromo)</td>
<td>Flecha (4140 Acero Aleación)</td>
<td>Caja de rodamientos (A216 GR WCB)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.

En la Tabla 1.66 se muestran las estrategias y líneas de acción que se deberán implementar en etapas subsecuentes para mejorar las capacidades de producción e incrementar el GIN en las bombas con las que se cuenta con una fabricación nacional.

7 Definidos como aquellos componentes de la bomba para los cuales el resultado de las entrevistas arrojó que existe porcentaje de fabricación nacional, definidos en la sección Análisis de Brecha por Tipo y Material.

8 Definidos como aquellos componentes de la bomba para los cuales el resultado de las entrevistas arrojó que no existe fabricación nacional, definidos en la sección Análisis de Brecha por Tipo y Material.
Tabla 1.66 Estrategias y Líneas de Acción para la Oferta Nacional con Capacidad de Producción y bajo GIN

<table>
<thead>
<tr>
<th>Estrategias/Líneas de Acción</th>
<th>OH2 S-6</th>
<th>VS1 I-2</th>
<th>VS4 S-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Capacitación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.1 Capacitación en temas genéricos</td>
<td>Reducción de costos</td>
<td>Metas de calidad</td>
<td>Desarrollo de mejoras en bienes</td>
</tr>
<tr>
<td>I.2 Capacitación en cursos específicos</td>
<td>Lean Manufacturing</td>
<td>Manejo de Materiales</td>
<td>Normatividad en adquisiciones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Normas y Certificaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.1 Desarrollo de laboratorios para la acreditación</td>
<td></td>
<td>Laboratorio EMA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Adquisición de Infraestructura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.1 Adquisición de maquinaria y equipo</td>
<td>Maquinados</td>
<td>Mandriladora</td>
<td>Instrumentos de medición</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Innovación y Desarrollo Tecnológico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.1 Proyectos de Asimilación de Tecnologías</td>
<td>Impulsor (Bronce)</td>
<td>Flecha (Acero al Carbono)</td>
<td></td>
</tr>
<tr>
<td>IV.2 Proyectos de Investigación y Desarrollo</td>
<td>Simulación de Comportamiento de Materiales</td>
<td>Manejo de nuevos materiales</td>
<td>Simulación de Comportamiento de Materiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Desarrollo de la Cadena de Valor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.1 Metodologías desarrollo de la cadena</td>
<td>Fundición</td>
<td>Recubrimientos</td>
<td>Tratamientos Térmicos</td>
</tr>
<tr>
<td>V.1 Metodologías desarrollo de la cadena</td>
<td>Fundición</td>
<td>Recubrimientos</td>
<td>Tratamientos Térmicos</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
Oferta Nacional con Oportunidad para ampliar Capacidades de Producción

Para la oferta nacional con una capacidad instalada insuficiente para atender la demanda estimada de PEMEX, se muestra la siguiente Tabla 1.67, con los principales hallazgos de su capacidad instalada, motivos de importación, componentes susceptibles de fabricación nacional y las áreas de oportunidad para la fabricación nacional de esos componentes actualmente importados. En la Tabla 1.68, se muestran las estrategias y líneas de acción que se deberán implementar en etapas subsecuentes para ampliar dichas capacidades de producción e incrementar su GIN.

Tabla 1.67 Oferta Nacional con Oportunidades para ampliar su Capacidad de Producción

<table>
<thead>
<tr>
<th>Próximas Hallazgos</th>
<th>Motivos de Importación</th>
<th>Componentes Susceptibles de Fabricación Nacional</th>
<th>Áreas de Oportunidad para la Industria Nacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad Instalada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH2 S-4</td>
<td>Sin capacidad instalada para la fabricación de bombas de rangos Alto y Bajo (GIN 100%)</td>
<td>Fabricación nacional</td>
<td>Carcasa (Acero al Carbono) Partes de carcasa (Hierro Fundido) Impulsor (Acero al Carbono) Flecha (Acero al Carbono) Caja de rodamientos (A216 GR WCB)</td>
</tr>
<tr>
<td>OH2 S-5</td>
<td>Sin capacidad instalada para la fabricación de bombas de rangos Medio y Bajo (GIN 83%)</td>
<td>Falta de proveedores nacionales. Precio Calidad</td>
<td>Carcasa (Acero al Carbono) Partes de carcasa (Acero al Carbono) Impulsor (Acero al Carbono) Caja de rodamientos (A216 GR WCB) Flecha (4140 Acero de Aleación)</td>
</tr>
<tr>
<td>OH2 S-8</td>
<td>Sin capacidad instalada para la fabricación de bombas de rangos Alto, Medio y Bajo (GIN 5%)</td>
<td>Estrategia de suministro global Precio Calidad Tiempo de entrega</td>
<td>Carcasa (Acero al Carbono) Caja de rodamientos (A216 GR WCB) Partes de carcasa (316 AUS) Impulsor (316 AUS) Flecha (316 AUS)</td>
</tr>
<tr>
<td>OH2 S-9</td>
<td>Sin capacidad instalada para la fabricación de bombas de rangos Medio y Bajo (GIN 85%)</td>
<td>Falta de proveedores locales Precio Calidad Tiempo de entrega</td>
<td>Carcasa (Acero al Carbono) Partes de carcasa (Ni-Cu Aleación) Impulsor (Ni-Cu Aleación) Caja de rodamientos (A216 GR WCB) Flecha (Ni-Cu Aleación)</td>
</tr>
<tr>
<td>OH2 A-8</td>
<td>Sin capacidad instalada para la fabricación de bombas de rangos Medio y Bajo (GIN 85%)</td>
<td>Certificaciones Precio Calidad Tiempo de entrega Estrategia de Suministro Global</td>
<td>Carcasa (316 AUS) Impulsor (316 AUS) Caja de rodamientos (A216 GR WCB) Partes de carcasa (316 AUS) Flecha (316 AUS)</td>
</tr>
<tr>
<td>Émbolo Simplex</td>
<td>Capacidad instalada insuficiente para la fabricación de bombas de rangos Alto y Medio (GIN 92%)</td>
<td>Certificaciones Precio Calidad Tiempo de entrega</td>
<td>Émbolo Cigueñal Cuerpo Cilindro Válvulas</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
Tabla 1.68a Estrategias y Líneas de Acción para ampliar la Capacidad de Producción

<table>
<thead>
<tr>
<th>Estrategias/Líneas de Acción</th>
<th>OH2 S-4</th>
<th>OH2 S-5</th>
<th>OH2 S-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Capacitación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.1 Capacitación en temas genéricos</td>
<td>Reducción de costos</td>
<td>Cambios metodologías y procesos</td>
<td>Desarrollo de mejoras en bienes en</td>
</tr>
<tr>
<td></td>
<td>Desarrollo de mejoras en bienes</td>
<td>Establecer metas</td>
<td>$\text{Reducción de Costos}$</td>
</tr>
<tr>
<td></td>
<td>Necesidades de Re-inversión</td>
<td>Establecer metas</td>
<td></td>
</tr>
<tr>
<td>I.2 Capacitación en cursos específicos</td>
<td>CAD – CAM (Computer Aided Design)</td>
<td>Six Sigma</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Herramienta Modelado REVIT</td>
<td>UL Manufacturing</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Máquinas CNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Normas y Certificaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.1 Desarrollo de laboratorios para la acreditación</td>
<td>Underwriters Laboratories (UL)</td>
<td>American Petroleum Institute (API)</td>
<td>Factory Mutual (FM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Adquisición de Infraestructura</td>
<td>Maquinados</td>
<td>Máquinas CNC</td>
<td>Maquinados</td>
</tr>
<tr>
<td>III.1 Adquisición de maquinaria y equipo</td>
<td>Impresora Tridimensional</td>
<td>Fresadoras</td>
<td>Mandriladora</td>
</tr>
<tr>
<td></td>
<td>Mandriladoras</td>
<td>Integración de Tableros</td>
<td>Instrumentos de medición</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tornos Verticales</td>
<td>Tornos verticales</td>
</tr>
<tr>
<td>IV. Innovación y Desarrollo Tecnológico</td>
<td>Flecha (4140 Acero de Aleación)</td>
<td>Partes de carcasa (316 AUS)</td>
<td>Impulsor (316 AUS)</td>
</tr>
<tr>
<td>IV.1 Proyectos de Asimilación de Tecnologías</td>
<td>Flecha (316 AUS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.2 Proyectos de Investigación y Desarrollo</td>
<td>Manejo de Nuevos Materiales</td>
<td>Manejo de nuevos materiales</td>
<td>Simulación de Comportamiento de Materiales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eliminación de Accesorios</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hermetizado de Productos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reducción de contaminantes</td>
</tr>
<tr>
<td>V. Desarrollo de la Cadena de Valor</td>
<td>Fundición</td>
<td>Soldadura</td>
<td>Pailería</td>
</tr>
<tr>
<td>V.1 Metodologías desarrollo de la cadena</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Financiamiento</td>
<td>Capital de trabajo</td>
<td>Capital de trabajo</td>
<td></td>
</tr>
<tr>
<td>VI.1 Acceso a mecanismos de financiamiento</td>
<td>Gasto para innovación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI.2 Gestión de Programas de Apoyo</td>
<td>Programa de Estímulos a la Innovación [CONACYT]</td>
<td>Apoyos INADEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apoyos NAFIN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
Tabla 1.68b Estrategias y Líneas de Acción para ampliar la Capacidad de Producción

<table>
<thead>
<tr>
<th>Estrategias/Líneas de Acción</th>
<th>OH2 S-9</th>
<th>OH2 A-8</th>
<th>Émbolo Simplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Capacitación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.1 Capacitación en temas genéricos</td>
<td>Cambios metodologías y procesos</td>
<td>Cambios metodologías y procesos</td>
<td>Desarrollo de mejoras en bienes. Reducción de Costos</td>
</tr>
<tr>
<td>I.2 Capacitación en cursos específicos</td>
<td>Six Sigma Herramienta Modelado REVIT UL Manufacturing Máquinas CNC</td>
<td>Six Sigma Herramienta Modelado REVIT UL Manufacturing Máquinas CNC</td>
<td>Normatividad de Adquisiciones</td>
</tr>
<tr>
<td>II. Normas y Certificaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.1 Desarrollo de laboratorios para la acreditación</td>
<td>-</td>
<td>-</td>
<td>American Petroleum Institute (API)</td>
</tr>
<tr>
<td>III. Adquisición de Infraestructura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.1 Adquisición de maquinaria y equipo</td>
<td>Máquinas CNC Fresadoras Integración de Tableros Tornos Verticales</td>
<td>Máquinas CNC Fresadoras Integración de Tableros Tornos Verticales</td>
<td>Maquinados Mandriladora Instrumentos de medición Tornos Verticales</td>
</tr>
<tr>
<td>IV. Innovación y Desarrollo Tecnológico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.1 Proyectos de Asimilación de Tecnologías</td>
<td>Flecha (Ni-Cu Aleación)</td>
<td>Partes de carcasa (316 AUS)</td>
<td>Cilindro Válvulas</td>
</tr>
<tr>
<td>IV.2 Proyectos de Investigación y Desarrollo</td>
<td>Manejo de nuevos materiales</td>
<td>Manejo de nuevos materiales</td>
<td>Manejo de Nuevos Materiales Mejora en Embarques y Empaquetados Reducción de Contaminantes</td>
</tr>
<tr>
<td>IV.3 Registro de Patentes</td>
<td></td>
<td></td>
<td>Registro de Patentes de la Empresa</td>
</tr>
<tr>
<td>V. Desarrollo de la Cadena de Valor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.1 Metodologías desarrollo de la cadena</td>
<td>Fundición</td>
<td>Fundición</td>
<td>Insumos Empaquetaduras Fabricación de Sellos</td>
</tr>
<tr>
<td>VI. Financiamiento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI.1 Acceso a mecanismos de financiamiento</td>
<td>Capital de trabajo</td>
<td>Capital de trabajo</td>
<td>Capital de trabajo Gasto para Innovación</td>
</tr>
<tr>
<td>VI.2 Gestión de Programas de Apoyo</td>
<td>Apoyos INADEM</td>
<td>Apoyos INADEM</td>
<td>Apoyos NAFIN</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
Demanda sin Capacidad de Producción Nacional

Como se señaló en el apartado anterior, existe un 73% de la demanda estimada total de bombas de PEMEX, para la cual no se identificaron capacidades instaladas de producción en las empresas entrevistadas. Esta demanda no cubierta, abre importantes áreas de oportunidad para la industria con el fin de desarrollar estrategias que les permita desarrollar las capacidades requeridas para atender dicha demanda.

Dentro de las principales bombas por su tipo y material de fabricación se destacan las mostradas en la siguiente Tabla 1.69, mismas que representan el 67% de la demanda no cubierta.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Material</th>
<th>Adquisiciones</th>
<th>Proyectos</th>
<th>Demanda No Atendida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diafragma</td>
<td></td>
<td>1,395</td>
<td>834</td>
<td>2,229</td>
</tr>
<tr>
<td>Émbolo</td>
<td></td>
<td>340</td>
<td>54</td>
<td>394</td>
</tr>
<tr>
<td>OH2</td>
<td>C-6</td>
<td>75</td>
<td>135</td>
<td>210</td>
</tr>
<tr>
<td>Diafragma</td>
<td>Diafragma Simplex</td>
<td></td>
<td>10</td>
<td>168</td>
</tr>
<tr>
<td>OH2</td>
<td>D-1</td>
<td>10</td>
<td>167</td>
<td>177</td>
</tr>
<tr>
<td>BB1</td>
<td>Carcasa: A216 Gr WCB; Impulsor: ASTM B62; Flecha: AISI 4140</td>
<td>35</td>
<td>122</td>
<td>157</td>
</tr>
<tr>
<td>OH2</td>
<td>S-1</td>
<td>10</td>
<td>135</td>
<td>145</td>
</tr>
<tr>
<td>BB3</td>
<td>S-6</td>
<td>-</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>BB5</td>
<td>D-1</td>
<td>-</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3,726</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.

El proceso para el desarrollo de capacidades de producción requiere de diversos factores que se tienen que implementar en los procesos de fabricación de las empresas. En la Tabla 1.70 se muestran las partes susceptibles de fabricación nacional.
Tabla 1.70 Partes Susceptibles de Fabricación Nacional para Bombas sin Oferta Nacional

<table>
<thead>
<tr>
<th>Principales Hallazgos Capacidad Instalada</th>
<th>Componentes Principales de las Bombas</th>
<th>Partes Susceptibles de Fabricación Nacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diafragma</td>
<td>Armazón</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extremo Líquido</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diafragma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Émbolo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Válvula</td>
<td></td>
</tr>
<tr>
<td>Émbolo</td>
<td>Émbolo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cigueñal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuerpo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cilindro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Válvulas</td>
<td></td>
</tr>
<tr>
<td>OH2 C-6</td>
<td>Carcasa (12% Cromo)</td>
<td>Caja de rodamientos (A216 GR WCB).</td>
</tr>
<tr>
<td></td>
<td>Partes de carcasa (12% Cromo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impulsor (12% Cromo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flecha (12% Cromo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caja de rodamientos (A216 GR WCB).</td>
<td></td>
</tr>
<tr>
<td>Diafragma Simplex</td>
<td>Armazón</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extremo Líquido</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diafragma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Émbolo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Válvula</td>
<td></td>
</tr>
<tr>
<td>OH2 D-1</td>
<td>Carcasa (Duplex)</td>
<td>Caja de rodamientos (A216 GR WCB).</td>
</tr>
<tr>
<td></td>
<td>Partes de carcasa (Duplex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impulsor (Duplex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flecha (Duplex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caja de rodamientos (A216 GR WCB).</td>
<td></td>
</tr>
<tr>
<td>BB1</td>
<td>Carcasa: A216 Gr WCB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impulsor: ASTM B62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flecha: AISI 4140</td>
<td></td>
</tr>
<tr>
<td>OH2 S-1</td>
<td>Carcasa (Acero al Carbono)</td>
<td>Carcasa (Acero al Carbono)</td>
</tr>
<tr>
<td></td>
<td>Partes de carcasa (Hierro Fundido)</td>
<td>Partes de carcasa (Hierro Fundido)</td>
</tr>
<tr>
<td></td>
<td>Impulsor (Hierro Fundido)</td>
<td>Impulsor (Hierro Fundido)</td>
</tr>
<tr>
<td></td>
<td>Flecha (Acero al Carbono)</td>
<td>Flecha (Acero al Carbono)</td>
</tr>
<tr>
<td></td>
<td>Caja de rodamientos (A216 GR WCB)</td>
<td>Caja de rodamientos (A216 GR WCB)</td>
</tr>
<tr>
<td>BB3 S-6</td>
<td>Carcasa (Acero al Carbono)</td>
<td>Carcasa (Acero al Carbono)</td>
</tr>
<tr>
<td></td>
<td>Partes de carcasa (12% Cromo)</td>
<td>Partes de carcasa (12% Cromo)</td>
</tr>
<tr>
<td></td>
<td>Impulsor (12% Cromo)</td>
<td>Impulsor (12% Cromo)</td>
</tr>
<tr>
<td></td>
<td>Flecha (4140 Acero Aleación)</td>
<td>Flecha (4140 Acero Aleación)</td>
</tr>
<tr>
<td></td>
<td>Caja de rodamientos (A216 GR WCB)</td>
<td>Caja de rodamientos (A216 GR WCB)</td>
</tr>
<tr>
<td>BB5 D-1</td>
<td>Carcasa (Duplex)</td>
<td>Caja de rodamientos (A216 GR WCB)</td>
</tr>
<tr>
<td></td>
<td>Partes de carcasa (Duplex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impulsor (Duplex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flecha (Duplex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caja de rodamientos (A216 GR WCB)</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
<table>
<thead>
<tr>
<th>Estrategias/Líneas de Acción</th>
<th>Bombas sin Capacidad Instalada de Producción</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Capacitación</td>
<td></td>
</tr>
<tr>
<td>I.1 Capacitación en temas genéricos</td>
<td>-</td>
</tr>
<tr>
<td>I.2 Capacitación en cursos específicos</td>
<td>-</td>
</tr>
<tr>
<td>II. Normas y Certificaciones</td>
<td>American Petroleum Institute (API)</td>
</tr>
<tr>
<td>III. Adquisición de Infraestructura</td>
<td></td>
</tr>
<tr>
<td>III.1 Adquisición de maquinaria y equipo</td>
<td>-</td>
</tr>
<tr>
<td>IV. Innovación y Desarrollo Tecnológico</td>
<td></td>
</tr>
<tr>
<td>IV.1 Proyectos de Asimilación de Tecnologías</td>
<td>Diafragma y Diafragma Simplex: Armazón, Extremo Líquido, Diafragma, Base, Ímbolo, y Válvula. Émbolo: Cilindro y Válvulas. OH2 C-6: Carcasa (12% Cromo), Partes de carcosa (12% Cromo), Impulsor (12% Cromo) y Flecha (12% Cromo) OH2 D-1 y BB5 D-1: Carcasa (Duplex), Partes de carcasa (Duplex), Impulsor (Duplex) y Flecha (Duplex) BB1: Carcasa: A216 Gr WCB, Impulsor: ASTM B62, Flecha: AISI 4140 BB3 S-6: Partes de carcasa (12% Cromo), Impulsor (12% Cromo) y Flecha (4140 Acero Aleación)</td>
</tr>
<tr>
<td>IV.2 Proyectos de Investigación y Desarrollo</td>
<td>Manejo de Nuevos Materiales</td>
</tr>
<tr>
<td>V. Desarrollo de la Cadena de Valor</td>
<td>Metodologías para el desarrollo de proveedores nacionales</td>
</tr>
<tr>
<td>V.1 Metodologías desarrollo de la cadena</td>
<td></td>
</tr>
<tr>
<td>VI. Financiamiento</td>
<td></td>
</tr>
<tr>
<td>VI.1 Acceso a mecanismos de financiamiento</td>
<td>Capital de trabajo Gasto para innovación.</td>
</tr>
<tr>
<td>VI.2 Gestión de Programas de Apoyo</td>
<td>Programa de Estímulos a la Innovación (CONACYT) Apoyos NAFIN</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con el Modelo de Pronóstico de Demanda de PEMEX y resultados de entrevistas.
CONCLUSIONES

El presente estudio identifica la demanda estimada de los tipos de bombas utilizadas por PEMEX y sus organismos subsidiarios; información que apoya a la industria nacional en la planeación de su inversión en el corto y mediano plazo.

Asimismo, la demanda estimada de bombas de PEMEX, abre oportunidades a la especialización de la industria nacional en la fabricación de bombas en las que se presenta la mayor demanda, con la posibilidad de incrementar su grado de integración nacional, ya sea a través del aumento de sus capacidades internas de producción o mediante la subcontractación de proveedores nacionales.

La estructura de la industria de bombas se puede dividir en dos grandes bloques: las medianas y grandes empresas, algunas con capital extranjero, con una alta variedad de fabricación de bombas, economías de escala en su producción e integración con grupos corporativos a nivel internacional; y la micro y pequeña empresas con capacidades limitadas de producción, bajas economías de escala, y subutilización de sus recursos.

En ambos grupos de empresas, se tiene una limitada integración de la cadena de valor nacional, las empresas medianas y grandes fabrican internamente algunas bombas e importan componentes principales para otros tipos de bombas. En el caso de la micro y pequeñas empresas, la baja demanda ha generado una subutilización de su capacidad instalada, optando por la importación de insumos, o por la integración de sistemas de bombeo. Bajo estas circunstancias, el grado de integración nacional muestra una alta variabilidad por tipo de bomba.

La industria nacional tiene capacidades limitadas para atender la demanda de PEMEX en los diversos tipos de bombas. En términos generales, las empresas entrevistadas tienen capacidades de producción para atender la demanda de 1,602 bombas, lo que representa el 21% de la demanda total de PEMEX y sus organismos subsidiarios.

En este sentido, el presente estudio plantea tres estrategias para mejorar o desarrollar las capacidades de producción e incrementar el grado de integración nacional en la fabricación de bombas:

1) Incrementar la fabricación nacional de bombas donde se tienen capacidades de producción suficientes.
2) Ampliar las capacidades de producción hacia bombas con mayor demanda de PEMEX.
3) Desarrollar capacidades de producción e incrementar el grado de integración nacional en bombas sin producción nacional.
Las tres estrategias planteadas permitirán consolidar la producción nacional de acuerdo con la demanda de PEMEX, por lo que se deberán implementar líneas de acción diferenciadas con un enfoque hacia la especialización por tipo y material de la bomba.

Es importante mencionar que las empresas participantes dispondrán de un análisis comparativo a nivel individual respecto a los resultados totales de las empresas entrevistadas, con los detalles de las acciones que se propone implementar para incrementar su producción y GIN, así también otros factores productivos requeridos como equipamiento, proveeduría, tecnología, capacitación y adopción de normas especializadas, entre otros.
BIBLIOGRAFÍA

- Estrategia de Petróleos Mexicanos para el Desarrollo de Proveedores, Contratistas y Contenido Nacional, Versión Inicial (A incorporarse en el Plan Estratégico Integral de Negocios de Petróleos Mexicanos y Organismos Subsidiarios, que será sometido a aprobación del Consejo de Administración de PEMEX).
- Presentación de la Estrategia de Petróleos Mexicanos para el Desarrollo de Proveedores, Contratistas y Contenido Nacional, Versión Inicial (A incorporarse en el Plan Estratégico Integral de Negocios de Petróleos Mexicanos y Organismos Subsidiarios, que será sometido a aprobación del Consejo de Administración de PEMEX).
- Reglas de Operación del Fideicomiso para Promover el Desarrollo de Proveedores y Contratistas Nacionales para la Industria Petrolera Nacional, Fideicomiso para Promover el Desarrollo de Proveedores y Contratistas Nacionales para la Industria Petrolera Estatal, Modificación 9 de Octubre de 2013.
- APOYOS PARA LA ASISTENCIA TÉCNICA, Estudio Sectorial: Bombas Utilizadas por la Industria Petrolera, Fideicomiso para Promover el Desarrollo de Proveedores y Contratistas Nacionales para la Industria Petrolera Estatal.
- NRF-050-PEMEX-2012 Bombas Centrífugas, Comité de Normalización de Petróleos Mexicanos y Organismos Subsidiarios, 14 de Julio de 2012.
<table>
<thead>
<tr>
<th>GLOSARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5s</td>
</tr>
<tr>
<td>Administración de Procesos de Manufactura</td>
</tr>
<tr>
<td>American National Standards Institute (ANSI)</td>
</tr>
<tr>
<td>American Petroleum Institute (API)</td>
</tr>
<tr>
<td>American Society of Mechanical Engineers (ASME)</td>
</tr>
<tr>
<td>Asociación Mexicana de Empresas del Ramo de Instalaciones para la Construcción (AMERIC)</td>
</tr>
<tr>
<td>Asociación Mexicana de Rociadores Automáticos contra Incendios (AMRACI)</td>
</tr>
</tbody>
</table>
Banco de Pruebas
Plataforma para experimentación de proyectos, y comprobación rigurosa, transparente y repetible de teorías científicas, elementos computacionales, y otras nuevas tecnologías.

Bombas Centrífugas
Equipos con un elemento rotativo (rodete) que comunica velocidad al líquido y genera presión.

Bombas de Cavidad Progresiva
Equipos conformados con un rotor largo central que se mueve dentro del estator para generar una presión que permite el movimiento de los fluidos.

Bombas de Desplazamiento Positivo
 Equipos de desplazamiento positivo para el movimiento de un fluido causado por la disminución del volumen de una cámara. Las bombas de desplazamiento positivo se pueden dividir en rotatorios o reciproantes.

Bombas de Diafragma
 Equipos con una varilla reciproante que mueve un diaphragma flexible dentro de una cavidad, descargando fluido en forma alternada.

Bombas de Émbolo
 Equipos basados en el movimiento alternativo de un pistón de doble efecto, accionado por un pistón hidráulico.

Bombas de Engranajes
 Equipos con dos engranes fuertemente unidos que giran dentro de una estructura para generar presión, permitiendo el movimiento de los fluidos.

Bombas de Engranajes Externos
 Equipos con rotor con dientes cortados internamente y que encajan en un engrane loco, cortado externamente.

Bombas de Engranajes Internos
 Equipos de tipo rotatorio cuyos dientes de los engranes generan una presión para la transferencia de fluidos.

Bombas de Tornillo
 Equipos con un impulsor helicoidal que acciona uno o más tornillos para generar la presión permitiendo el movimiento de los fluidos axialmente.
Bombas para la Industria Petrolera	Equipos que permiten el transporte de hidrocarburos y sus derivados, el manejo de fluidos de los procesos de producción, así como aquellas para uso en servicios auxiliares y apoyo a los procesos.
Bombas Reciprocantes	Equipos de desplazamiento positivo que descargan una cantidad definida de líquido durante el movimiento del pistón o émbolo a través de una distancia.
Bombas Rotatorias	Equipos de desplazamiento positivo conformados por una caja fija que contiene engranes, aspas, pistones, levas, segmentos, tornillos, etc., que operan con un claro mínimo.
CAD/CAM: (CAD: Computer-aided design)	Software para el diseño de productos que integra métodos computacionales y de ingeniería.
Caja de Rodamientos	Componente ubicado en el extremo del lado del cople de la bomba con el espacio para alojar los rodamientos y depositar el aceite lubricante.
CANACINTRA	Cámara Nacional de la Industria de Transformación.
Carcasa	Componente de la bomba que encierra el líquido lanzado por el impulsor y lo envía a la tubería de descarga; proporciona dirección al líquido y convierte su velocidad en energía de presión.
Código SCIAN 333910	Código de la Clase de Actividad 333910. Fabricación de bombas y sistemas de bombeo.
Densidad	La densidad – peso ó peso específico de una sustancia es su peso por unidad de volumen.
Ensamble	Unión de dos o más piezas que forman parte de una estructura.
Estudio de Tiempos y Movimientos	Es una técnica de eficiencia en el negocio que combina el trabajo de Estudio de Tiempos, que ha ayudado a solucionar
multitud de problemas de producción y a reducir costos.

Factory Mutual (FM). Compañía norteamericana global, inmersa en el mercado de propiedades en alto riesgo de protección (HPR); es líder en materia de prevención de pérdida para grandes corporaciones en el mundo.

FISO Fideicomiso para Promover el Desarrollo de Proveedores y Contratistas Nacionales para la Industria Petrolera Nacional.

Flecha Componente de la bomba que transmite la fuerza del motor hacia el impulsor de la bomba.

Herramientas (software) de Modelado REVIT Software de modelado de información de construcción.

Impresora Tridimensional Máquina capaz de realizar "impresiones" de diseños en 3D, creando piezas o maquetas volumétricas a partir de un diseño computacional.

Impulsor Componente de la bomba que da velocidad al líquido como resultado de la fuerza centrífuga.

INEGI Instituto Nacional de Estadística, Geografía e Informática.

Ingeniería Inversa Proceso de identificación de los principios tecnológicos de un dispositivo, objeto o sistema, a través de razonamiento de su estructura, función y operación.

Instrumentos de Medición Aparato o dispositivo utilizado para comparar magnitudes físicas mediante un proceso de medición.

ISO International Organization for Standardization.
Lean Manufacturing Práctica empleada en procesos de manufactura para la mejora y optimización de un sistema de producción, orientado a identificar y eliminar desperdicios, definidos éstos como aquellos procesos o actividades que usan más recursos de los estrictamente necesarios.

Manejo de Materiales Sistema o combinación de métodos, instalaciones, mano de obra y equipamiento para transporte, embalaje y almacenaje.

Maquinados Proceso de manufactura en el cual se usa una herramienta de corte para remover el exceso de material de una parte de trabajo, de tal manera que el remanente sea la forma deseada.

Máquinas de Control Numérico Máquinas utilizadas para controlar los movimientos de los componentes de una máquina por medio de controles numéricos.

Máquinas Fresadoras Mecanizado por corte de material.

Método de Elementos Finitos Método de cálculo utilizado en ingeniería, basado en considerar al cuerpo o estructura dividido en elementos discretos, y generar un sistema de ecuaciones que se resuelven numéricamente y proporcionando el estado de tensiones y deformaciones.

Modelos de calidad Conjunto de prácticas vinculadas a los procesos de gestión y el desarrollo de proyectos, supone una planificación para alcanzar un impacto estratégico, cumpliendo con los objetivos fijados en lo referente a la calidad del producto o servicio.

Modelos de Seguridad e Higiene Modelo de actividades orientadas a crear condiciones, capacidades y cultura para que los trabajadores y su organización puedan desarrollar de manera eficiente la actividad laboral.
National Fire Protection Association (NFPA)	Es una organización estadounidense encargada de crear y mantener las normas y requisitos mínimos para la prevención contra incendio, capacitación, instalación y uso de medios de protección contra incendio.
Norma ISO 17025. Requisitos para laboratorios de Ensayo y Calibración.	Es una norma internacional de calidad en la que se establecen los requisitos que deben cumplir los laboratorios de ensayo y calibración.
Norma ISO 9000	Es un conjunto de normas sobre gestión de calidad, establecidas por la Organización Internacional de Normalización (ISO), aplicadas en cualquier tipo de organización o actividad orientada a la producción de bienes y servicios.
Occupational Health and Safety Assessment Series (OHSAS)	Sistemas de Gestión de Seguridad y Salud Ocupacional con especificaciones sobre la salud y seguridad en el trabajo.
PEMEX	Petróleos Mexicanos.
Personal ocupado	Comprende a los trabajadores empleados y obreros, eventuales o de planta.
Producción bruta total	Es el valor de todos los bienes y servicios emanados de la actividad económica como resultado de las operaciones realizadas por las unidades económicas.
Project Management Professional (PMP)	Certificación internacional de la experiencia, formación y competencias para liderar proyectos de manera exitosa.
SCIAN	Sistema de Clasificación Industrial de América del Norte.
Sellos	Componentes de la bomba cuya finalidad es proporcionar un cierre que reduzca la cantidad de líquido que se pierde por fugas entre las partes en movimiento y las fijas de la bomba.
Six Sigma
Metodología de mejora de procesos centrada en la reducción de la variabilidad de los mismos, consiguiendo reducir o eliminar los defectos o fallos en la entrega de un producto o servicio al cliente.

Solidworks
Programa de diseño asistido por ordenador para modelado mecánico.

Tornos Verticales (CNC)
Tipo de torno diseñado para mecanizar piezas grandes, que sujetan el plato de grandes dimensiones con grapas u otros accesorios, y que por su magnitud o peso imposibilitan su fijación a un torno estándar.

UDPCCN
Unidad de Desarrollo de Proveedores, Contratistas y Contenido Nacional de Petróleos Mexicanos.

Underwriters Laboratories (UL)
Es una organización especializada en pruebas y certificación de seguridad de productos.

Valor agregado censal bruto
Es el valor de la producción que se añade durante el proceso de trabajo, por la actividad creadora y de transformación del personal ocupado, el capital y la organización (factores de la producción), ejercida sobre los materiales que se consumen en la realización de la actividad económica.

Viscosidad
La viscosidad expresa la resistencia con la cual un líquido fluye cuando es obligado por una fuerza externa.

Yellow Belt
Metodología orientada a facilitar la generación de las reuniones de equipo y optimizar la aplicación de herramientas.
Anexo 1. Estadísticas Comercio Exterior

El Banco de México publica la información de la balanza de productos manufacturados, la cual detalla las exportaciones e importaciones de los principales productos industriales. Para efectos de realizar un análisis de las exportaciones e importaciones por tipo de bombas, se utilizó la Partida 84.13 Bombas para líquidos, incluso con dispositivo medidor incorporado; elevadores de líquido\(^9\), así como una serie de fracciones arancelarias relacionadas con los tipos de bombas analizadas en el presente estudio (Tabla A.1).

<table>
<thead>
<tr>
<th>Fracción Arancelaria</th>
<th>Descripción de la Fracción Arancelaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>8413.70.99</td>
<td>Las demás Bombas centrífugas(^10)</td>
</tr>
<tr>
<td>8413.70.06</td>
<td>Bombas de tipo centrífugo para manejo de petróleo y sus derivados.</td>
</tr>
<tr>
<td>8413.60.03</td>
<td>De engranes, excepto lo comprendido en la fracción 8413.60.01(^11)</td>
</tr>
<tr>
<td>8413.50.01</td>
<td>Las demás Bombas volumétricas alternativas – Con peso unitario igual o superior a 1,000 kg(^12)</td>
</tr>
</tbody>
</table>

Balanza Comercial de Bombas Centrífugas

Como se observa en la Gráfica A.1, del 2003 al 2013, el valor de las exportaciones de bombas centrífugas ha sido significativamente mayor que las importaciones realizadas en este tipo de bombas, tanto en términos de su valor económico como en número de unidades (Gráfica A.2), derivando en que el saldo de la balanza comercial sea cada vez más positivo a partir del año 2009.

\(^{9}\) Esta partida comprende las máquinas y aparatos, tanto si son accionados a mano como por cualquier otra fuerza motriz, destinados a elevar o a hacer circular líquidos, sean o no viscosos (incluido el metal fundido y el hormigón líquido). Se incluyen aquí las máquinas y aparatos de esta clase con motor incorporado (motobombas, turbo bombas, electrobombas). También se clasifican en esta partida las bombas distribuidoras de líquidos provistas de un dispositivo medidor y contador, con o sin dispositivo del precio de venta, tales como las que se utilizan para la distribución de gasolina y aceite en los garajes. Incluye asimismo las bombas especialmente diseñadas para incorporarlas a una máquina, tales como las bombas de agua, de aceite o de gasolina para motores de encendido por chispa o por compresión y las bombas para máquinas de hilar las fibras sintéticas y artificiales.

\(^{10}\) Son aparatos alimentados axialmente en los que el líquido, que gira por la acción de una rueda de alabes o de paletas, se proyecta por la acción centrífuga en un cuerpo colector anular provisto de una salida tangencial; el colector está, a veces, provisto de una corona de alabes divergentes, llamada difusor que transforma la energía cinética del fluido, en presión elevada.

\(^{11}\) En estas bombas, el líquido es igualmente aspirado e impulsado por depresión y compresión sucesivas, por la acción de uno o varios elementos animados de un movimiento de rotación continuo alrededor de su eje. Estos elementos conservan, en uno o varios puntos, el contacto con la pared del cuerpo de la bomba y forman de este modo cámaras en las que el líquido se desplaza.

\(^{12}\) Este grupo comprende principalmente las bombas de émbolo, cuyo principio de funcionamiento se basa en la aspiración o impulsión producidas por el movimiento alternativo lineal de un émbolo que se desplaza dentro de un cilindro; elementos de separación (por ejemplo, válvulas) impiden el retroceso del líquido aspirado o impulsado.
En 2013 – 2014, en términos de los principales países a los que se dirigen nuestras exportaciones de bombas centrífugas, se destaca Estados Unidos de América con exportaciones que superan los 200 millones de dólares, lo que representa el 78% de nuestras exportaciones totales, seguido de Venezuela y Canadá con el 6% y 5%, respectivamente sobre las exportaciones totales (Gráfica A.3).

Respecto a los principales países de importación de bombas centrífugas, Estados Unidos de América realiza importaciones hacia nuestro país con un valor superior a los 117 millones de dólares, lo que representa el 62% de las nuestras importaciones totales, seguido de China e Italia con el 21% y 5% de las importaciones totales (Gráfica A.4).
Balanza Comercial Bombas Engranes

En el período 2003 – 2013, el valor de las importaciones de bombas de engranes ha sido significativamente mayor que las exportaciones realizadas en este tipo de bombas, derivando en un saldo de la balanza comercial deficitario (Gráfica A.5).

En el período 2013 – 2014, Estados Unidos de América es el principal país importador de bombas de engranes con un valor superior a los 29 millones de dólares, lo que representa el 55% de nuestras importaciones totales, seguido de Canadá y Alemania con 17% y 7%, respectivamente (Gráfica A.7).

En lo relativo a nuestras exportaciones de bombas de engranes, el 91% de las exportaciones totales se dirigen hacia Estados Unidos por un monto superior a los 22.6 millones de dólares, seguido de exportaciones hacia Bélgica y Japón con un 4% y 2% de las exportaciones totales (Grafica A.8).
Balanza Comercial Émbolo

En el período 2003 - 2013, el valor de las importaciones de bombas de tipo émbolo ha sido significativamente mayor que las exportaciones realizadas de este tipo de bombas, tanto en términos de su valor económico (Gráfica A.9) como número de unidades (Gráfica A.10), derivando en que el saldo de la balanza comercial sea cada vez más negativo a partir del año 2009.
En el período 2013 – 2014, Estados Unidos de América es el principal país importador de bombas de émbolo con un valor superior a los 75 millones de dólares, lo que representa el 79% de nuestras importaciones totales, seguido de China con un 19% de nuestras importaciones totales (Gráfica A.11).

En lo relativo a las exportaciones de bombas de engranes, el 57% de nuestra producción se dirige hacia Estados Unidos por un monto cercano a los 8 millones de dólares (Grafica A.12).

Fuente: Sistema de Información Arancelaria Vía Internet en la Página Web http://www.economia-snci.gob.mx.
Balanza Comercial Bombas Centrífugas para Petróleo y sus Derivados

Como se observa en la Gráfica A.13, del 2003 al 2013, el valor de las exportaciones de bombas centrífugas para petróleo y sus derivados ha sido significativamente mayor que las importaciones realizadas en este tipo de bombas en términos económicos como en número de unidades (Gráfica A.14), derivando en que el saldo de la balanza comercial sea superavitario.

Del 2013 – 2014, 56% de nuestras exportaciones se dirigieron hacia los Estados Unidos de América por un monto total cercano a los 20 millones de dólares, seguido de las exportaciones hacia Colombia y Corea, del orden de 14% y 12%, respectivamente (Gráfica A.15).

Respecto a los principales países de importación de bombas, Estados Unidos de América realiza importaciones hacia nuestra país con un valor superior a los 5.5 millones de dólares, lo que representa el 48% de nuestras importaciones totales, seguido de la Gran Bretaña y Singapur con 34% y 7% de las importaciones totales, respectivamente (Gráfica A.16).

En el periodo 2003 - 2013, las importaciones crecieron a una tasa mayor a exportaciones. Es decir, las empresas manufactureras establecidas en México y que demandan bombas están comprando, de manera creciente, estos insumos del exterior; asimismo, los productores nacionales han perdido capacidad para colocar sus productos en los mercados de exportación.
Anexo 2. Industria de Bombas INEGI

El presente apartado se elaboró con base en la información estadística disponible del Censo Económico 2009 del Instituto Nacional de Estadística, Geografía e Informática (INEGI). En este sentido, se analizó la Rama 333910. Fabricación de bombas y sistemas de bombeo del SCIAN 2007, que incluye aquellas “Unidades económicas dedicadas principalmente a la fabricación de bombas y de sistemas de bombeo para uso industrial, comercial y doméstico”\(^{13}\).

Es importante señalar que la rama incluye a empresas fabricantes de todos los tipos de bombas, sin diferenciar aquellas dedicadas a la fabricación de bombas utilizadas en la industria petrolera, el análisis nos permitirá obtener indicadores agregados de la industria nacional y sus razones de productividad.

Tamaño de Empresas

En México existían en el 2009 un total de 149 unidades económicas en la rama Fabricación de bombas y sistemas de bombeo. De este universo de empresas, 63 son micro empresas con hasta 10 empleados y 47 pequeñas empresas con 11 hasta 50 empleos, lo que representa el 72% de las empresas. Por el contrario, sólo 7 empresas, lo que representa el 5% del total de empresas, cuentan con más de 250 empleados (Gráfica A.17). Lo anterior, evidencia que la industria de bombas se conforma, principalmente, por micro y pequeñas empresas.

En términos del personal ocupado total, las 149 empresas de la rama Fabricación de bombas y sistemas de bombeo generaron 7,093 empleados. Es importante destacar que el 80% del empleo total, se concentra en las empresas medianas y grandes, mismas que representan el 26% del total de unidades económicas (Gráfica A.18).

\(^{13}\) *Incluye también: u.e.d.p. a la fabricación de equipo para la compresión de aire o gas, y de equipo de aspersión y espolvoreo de uso industrial. Excluye: u.e.d.p. a la fabricación de compresoras para aire acondicionado; de sopladores industriales (333411, Fabricación de equipo de aire acondicionado y calefacción); de compresoras para refrigeración (333412, Fabricación de equipo de refrigeración industrial y comercial), y de bombas y motores de fuerza hidráulica (333999, Fabricación de otra maquinaria y equipo para la industria en general).*
La industria nacional de bombas se concentra principalmente en los estados de Nuevo León, Distrito Federal, Jalisco, Estado de México y Guanajuato, entidades que en su conjunto agrupan el 63% de las empresas fabricantes de bombas, y generan cerca de 4,400 empleos, mismos que representan el 62% de los empleos totales a nivel nacional (Gráfica A.19). Es importante destacar a las entidades de Chihuahua, Tlaxcala y Baja California como aquellas entidades con los mayores promedios de personal ocupado por empresa.

Fuente: Elaboración propia con datos del Censo Económico 2009, INEGI.
Producción Bruta y Valor Agregado

La producción bruta total es el valor de todos los bienes y servicios emanados de la actividad económica como resultado de las operaciones realizadas por las empresas fabricantes de bombas. En este sentido, un factor importante de competitividad lo constituye la capacidad de generar economías de escala interna, lo que sin duda favorece a las empresas medianas y grandes. Al analizar el tamaño promedio de las empresas y el valor de la producción bruta total, se distingue un claro patrón caracterizado por una mayor producción en las empresas de mayor tamaño, de tal forma que las medianas y grandes empresas aportan en su conjunto el 91% de la producción bruta total de la industria nacional de bombas (Gráfica A.20).

En términos del valor agregado definido como el de la producción que se añade durante el proceso de trabajo por las empresas fabricantes de bombas, se presenta una tendencia similar a la producción bruta total, siendo las medianas y grandes empresas quienes generan el 92% del valor agregado como resultado de sus procesos productivos (Gráfica A.21).

Dotación de Activos Fijos por Empleo

La disponibilidad de activos fijos por tamaño de empresas muestra una concentración del 97% de los activos fijos en las medianas y grandes empresas (Gráfica A.22). Sin duda, la menor dotación de activos con la que operan las empresas es un determinante fundamental de la productividad de los empleos y de las empresas de la industria. En la caso, de las micro y pequeña empresas, con la
existencia de importantes rezagos en los activos y tecnologías, es imposible enfrentar de manera efectiva la creciente competencia global y el contexto de cambio continuo en los mercados.

Asimismo, en el análisis de la disponibilidad de los activos fijos por empresa y empleo, las empresas grandes, con un empleo superior a los 250 trabajadores, aportan el 85% de los activos fijos por empresa y el 46% de activos fijos por empleado. Lo que es evidente de las Gráficas A.22 y A.23, es que los estratos de micro y pequeñas empresas presentan muy bajas proporciones de activos fijos por empresa y trabajador, lo que sin duda refleja esta menor capacidad de acceder a los flujos de tecnología, sistemas crediticios y de apoyos gubernamentales.

Productividad de Empresas y Empleos

Una de las formas más prácticas y aceptadas para medir y analizar la productividad de las actividades económicas, es la razón entre el valor agregado y el número de empleos y el número de empresas, a través de estas medidas es posible conocer o aproximar la productividad de los empleos y de las empresas, respectivamente; en buena forma como reflejo de diversas condiciones [al interior y exterior de las empresas] que estimulan o inhiben mayores niveles de producción ante una cantidad fija de insumos.
Con relación a la productividad por empleo, en la Gráfica A.24 se observa como la micro y pequeña empresas con menos de 50 trabajadores muestran los niveles más bajos de valor agregado por empleo. Como se aprecia, al parecer el tamaño óptimo de planta se ubica en las empresas grandes con más de 250 empleados, ya que en dicho estrato se alcanza el mayor nivel de eficiencia de los empleos (Gráfica A.25).

Al analizar el valor agregado por empresa se observa una clara relación positiva entre productividad y tamaño de empresa, las empresas grandes aportan el 87% de la productividad por empresa. Esto sugiere que, independientemente de la productividad promedio por empleo, las empresas fabricantes de mayor tamaño son en general más productivos, los que refuerza la idea de la necesidad de alcanzar un tamaño mínimo de planta para la competitividad al interior de las empresas.

Fuente: Elaboración propia con datos del Censo Económico 2009, INEGI.
Anexo 3. Tipos de Bombas Analizados

Conforme a la normas internacionales para la industria petrolera del American Petroleum Institute (API) se tiene una clasificación por tipo y clases de materiales de fabricación, que dependen de un conjunto de variables como la capacidad de gasto diferencial, presiones, variabilidad y los diferentes fluidos a manejar, entre otros factores.

Tipos de Bombas Centrífugas

OH1

Tipo de bomba en voladizo con acoplamiento flexible, con una orientación horizontal montada al pie.

OH2

Tipo de bomba en voladizo con acoplamiento flexible, con una orientación horizontal soportada en la línea de los centros.
Tipo de bomba en voladizo con acoplamiento flexible, con una orientación vertical en línea con cojinetes en soportes.

Tipo de bomba en voladizo con acoplamiento rígido, con una orientación vertical en línea.

Tipo de bomba en voladizo con acoplamiento cubierto (Cerrado), con una orientación vertical en línea.
OH6
Tipo de bomba en voladizo con acoplamiento cubierto (Cerrado), con una orientación alta velocidad con engranaje integrado.

BB1
Tipo de bomba montada entre cojines con 1 y 2 etapas, con una orientación dividida axialmente.

BB2
Tipo de bomba montada entre cojines con 1 y 2 etapas, con una orientación dividida radialmente.
BB3
Tipo de bomba montada entre cojines con multietapas, con una orientación dividida axialmente.

BB4
Tipo de bomba montada entre cojines con multietapas, con una orientación dividida radialmente con carcasa sencilla.

BB5
Tipo de bomba montada entre cojines con multietapas, con una orientación dividida radialmente con carcasa doble.
VS1

Tipo de bomba verticalmente suspendida con carcasa sencilla, con una orientación descarga a través de la columna con difusor.

VS2

Tipo de bomba verticalmente suspendida con carcasa sencilla, con una orientación descarga a través de la columna con voluta.

VS3

Tipo de bomba verticalmente suspendida con carcasa sencilla, con una orientación descarga a través de la columna con flujo axial.
VS4
Tipo de bomba verticalmente suspendida con carcasa sencilla, con una orientación descarga separada con flecha en línea.

VS5
Tipo de bomba verticalmente suspendida con carcasa sencilla, con una orientación descarga separada con impulsor en voladizo.

VS6
Tipo de bomba verticalmente suspendida con carcasa doble, con una orientación difusor.
Tipo de bomba verticalmente suspendida con carcasa doble, con una orientación voluta.

Fuente: American Petroleum Institute (API).
Tabla A.2a Clasificación de Materiales conforma a la Norma API

<table>
<thead>
<tr>
<th>Clase Componente</th>
<th>I-1</th>
<th>I-2</th>
<th>S-1</th>
<th>S-3</th>
<th>S-4</th>
<th>S-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARCASA</td>
<td>Hierro fundido</td>
<td>Hierro fundido</td>
<td>Acero al carbono</td>
<td>Acero al carbono</td>
<td>Acero al carbono</td>
<td>Acero al carbono</td>
</tr>
<tr>
<td>PARTES DE CARCASA</td>
<td>Hierro fundido</td>
<td>Bronce</td>
<td>Hierro fundido</td>
<td>Ni-Resist</td>
<td>Hierro fundido</td>
<td>Acero al carbono</td>
</tr>
<tr>
<td>IMPULSOR</td>
<td>Hierro fundido</td>
<td>Bronce</td>
<td>Hierro fundido</td>
<td>Ni-Resist</td>
<td>Acero al carbono</td>
<td>Acero al carbono</td>
</tr>
<tr>
<td>FLECHA</td>
<td>Acero al carbono</td>
<td>4140 Acero de aleación</td>
</tr>
<tr>
<td>CAJA DE RODAMIENTOS</td>
<td>A216 GR WCB</td>
</tr>
</tbody>
</table>

Fuente: American Petroleum Institute (API).

Tabla A.2b Clasificación de Materiales conforma a la Norma API

<table>
<thead>
<tr>
<th>Clase Componente</th>
<th>S-6</th>
<th>S-8</th>
<th>S-9</th>
<th>C-6</th>
<th>A-7</th>
<th>A-8</th>
<th>D-1</th>
<th>D-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARCASA</td>
<td>Acero al carbono</td>
<td>Acero al carbono</td>
<td>Acero al carbono</td>
<td>12% Cromo</td>
<td>AUS 316</td>
<td>AUS 316</td>
<td>Duplex</td>
<td>Super Duplex</td>
</tr>
<tr>
<td>PARTES DE CARCASA</td>
<td>12% Cromo AUS 316</td>
<td>Ni-Cu Aleación</td>
<td>12% Cromo AUS 316</td>
<td>AUS 316</td>
<td>Duplex</td>
<td>Super Duplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPULSOR</td>
<td>12% Cromo AUS 316</td>
<td>Ni-Cu Aleación</td>
<td>12% Cromo AUS 316</td>
<td>AUS 316</td>
<td>Duplex</td>
<td>Super Duplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLECHA</td>
<td>4140 Acero de aleación AUS 316</td>
<td>Ni-Cu Aleación</td>
<td>12% Cromo AUS 316</td>
<td>AUS 316</td>
<td>Duplex</td>
<td>Super Duplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAJA DE RODAMIENTOS</td>
<td>A216 GR WCB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: American Petroleum Institute (API).
<table>
<thead>
<tr>
<th>Material</th>
<th>Fundiciones sujetas a presión</th>
<th>Barras</th>
<th>Tornillería</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acero al carbón</td>
<td>ASTM A 216, Gr WCA ó Gr WCB ó equivalente.</td>
<td>ASTM A 108 ó ASTM A 575 ó equivalente.</td>
<td></td>
</tr>
<tr>
<td>12% Cromo</td>
<td>ASTM A 743 Gr CF-20 ó equivalente.</td>
<td>ASTM A 276 Tipo 304 (UNS S30400) ó equivalente.</td>
<td>ASTM A 193 Gr B8 ó equivalente.</td>
</tr>
<tr>
<td>5% Cromo</td>
<td>ASTM A 217 Gr C5 (UNS J 42045) ó equivalente.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleación 20</td>
<td>ASTM B 462 UNS N08020 (Forjado) ó equivalente; ASTM A 744 Gr CN7M (UNS N08007) (Fundición) ó equivalente.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: NRF-182-PEMEX-2013. Bombas de Desplazamiento Positivo: Dosificadoras, Comité de Normalización de Petróleos Mexicanos y Organismos Subsidiarios.
<table>
<thead>
<tr>
<th>Clase de material</th>
<th>Especificación ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carcasa</td>
</tr>
<tr>
<td>Hierro fundido</td>
<td>A 278 o A 48</td>
</tr>
<tr>
<td>Hierro nodular</td>
<td>A 395</td>
</tr>
<tr>
<td>Acero al carbono</td>
<td>A 216, Gr WCA o Gr WCB</td>
</tr>
<tr>
<td>Bronce</td>
<td>B 584</td>
</tr>
<tr>
<td>Acero al 5% cromo</td>
<td>A 217, Gr C5</td>
</tr>
<tr>
<td>Acero al 12% cromo</td>
<td>A 744/A 744M</td>
</tr>
<tr>
<td>Acero inoxidable 18-8</td>
<td>A 744/A 744M</td>
</tr>
<tr>
<td>Acero inoxidable 316</td>
<td>A 744/A 744M</td>
</tr>
<tr>
<td>Acero AISI 4140</td>
<td>----</td>
</tr>
</tbody>
</table>

Anexo 4. Entrevista Aplicada

La entrevista aplicada se integró por 5 secciones:

1) Información General

<table>
<thead>
<tr>
<th>1.1 Datos Generales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 Empresa</td>
</tr>
<tr>
<td>1.1.6 Municipio/Delegación</td>
</tr>
<tr>
<td>1.1.7 Entidad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2 Origen del Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1 ¿En qué año inicio operaciones?</td>
</tr>
<tr>
<td>1.2.2 ¿Cómo está conformado su capital social?</td>
</tr>
<tr>
<td>% Nacional</td>
</tr>
<tr>
<td>% Extranjero</td>
</tr>
<tr>
<td>1.2.3 En su caso, ¿Cuál es el país de origen del capital social?</td>
</tr>
<tr>
<td>1.2.4 ¿Su empresa pertenece a un grupo corporativo o es empresa única?</td>
</tr>
<tr>
<td>1.2.5 En su caso, su empresa es corporativo o filial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3 Recursos Humanos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1 ¿Cuál es su número total de empleados?</td>
</tr>
<tr>
<td>1.3.1.1 Tamaño de empresa</td>
</tr>
<tr>
<td>1.3.2 ¿Cómo se distribuyen sus empleados por permanentes o temporales?</td>
</tr>
<tr>
<td>% Permanentes</td>
</tr>
<tr>
<td>% Temporales</td>
</tr>
<tr>
<td>1.3.3 ¿Cómo se distribuyen sus empleados por área?</td>
</tr>
<tr>
<td>% Administración/Ventas</td>
</tr>
<tr>
<td>% Producción/Operaciones</td>
</tr>
<tr>
<td>% Ingeniería/Desarrollo</td>
</tr>
<tr>
<td>% Mantenimiento</td>
</tr>
<tr>
<td>% Calidad</td>
</tr>
<tr>
<td>% Otros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3.4 Indique el % del nivel de estudios de sus empleados por área</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Administración/Ventas</td>
</tr>
<tr>
<td>% Producción/Operaciones</td>
</tr>
<tr>
<td>% Ingeniería/Desarrollo</td>
</tr>
<tr>
<td>% Mantenimiento/Servicios</td>
</tr>
<tr>
<td>% Calidad</td>
</tr>
<tr>
<td>% Otros</td>
</tr>
</tbody>
</table>

| 1.3.5 ¿Está interesado en implementar cursos, talleres o diplomados? |
| 1.3.6 Mencione sus principales necesidades de capacitación por tema |
| Producción/Operaciones |
| Ingeniería/Desarrollo |
| Mantenimiento |
| Calidad |
| Otros |
2) Infraestructura y Procesos

<table>
<thead>
<tr>
<th>2.1 Maquinaria y Equipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Sus instalaciones son propias o rentadas</td>
</tr>
<tr>
<td>2.1.2 Señale el % de origen de fabricación de su Maquinaria y Equipo</td>
</tr>
<tr>
<td>% Nacional</td>
</tr>
<tr>
<td>% Foránea</td>
</tr>
<tr>
<td>2.1.3 ¿Cuál es la antigüedad promedio de su maquinaria y equipo?</td>
</tr>
<tr>
<td>2.1.4 ¿Cómo definiría su modernidad tecnológica?</td>
</tr>
<tr>
<td>2.1.5 ¿Qué tipo de mantenimiento aplica a su maquinaria y equipo?</td>
</tr>
<tr>
<td>2.1.6 Indique, ¿el nivel con el que su maquinaria y equipo cumplen con los volúmenes de producción esperados?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2 Procesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Subcontrata algún proceso para la fabricación de bombas</td>
</tr>
<tr>
<td>2.2.2 Qué % subcontrata</td>
</tr>
<tr>
<td>2.2.3 Cuál es el % de subcontratación</td>
</tr>
<tr>
<td>% Empresas Nacionales</td>
</tr>
<tr>
<td>% Empresas Foráneas</td>
</tr>
<tr>
<td>2.2.4 En su caso, qué proceso(s) subcontrata</td>
</tr>
<tr>
<td>2.2.5 ¿Cuál es su disposición para subcontratar dichos procesos a empresas nacionales?</td>
</tr>
<tr>
<td>2.2.6 ¿Ha participado o cuenta con metodologías de desarrollo de proveedores?</td>
</tr>
<tr>
<td>2.2.7 ¿Tiene identificadas áreas críticas para mejorar la integración de su cadena de valor?</td>
</tr>
<tr>
<td>2.2.8 ¿Podría mencionar un área crítica para mejorar la integración de su cadena de valor?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3 Diagnóstico Tecnológico</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 ¿Tiene identificados requerimientos tecnológicos (maquinaria y equipo) para mejorar su capacidad de producción?</td>
</tr>
<tr>
<td>2.3.2 ¿En cuál proceso de fabricación tiene requerimientos tecnológicos?</td>
</tr>
<tr>
<td>2.3.3 ¿Mencione la maquinaria y equipo que estaría interesado en adquirir?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.4 Certificación de Procesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 ¿Cuenta con alguna certificación requerida por la industria de bombas para la industria petrolera?</td>
</tr>
<tr>
<td>2.4.2 ¿Cuál certificación tiene implementada?</td>
</tr>
<tr>
<td>2.4.3 ¿Cuál certificación estaría interesado en implementar en sus procesos?</td>
</tr>
</tbody>
</table>
3) Producción

<table>
<thead>
<tr>
<th>TIPO DE BOMBA</th>
<th>CLASE MATERIALES API</th>
<th>PLAN</th>
<th>RANGO GASTO</th>
<th>COMPONENTES PRINCIPALES</th>
<th>ESTRUCTURA DE COSTOS</th>
</tr>
</thead>
</table>

ORIGEN POR PRINCIPALES COMPONENTES

<table>
<thead>
<tr>
<th>Material</th>
<th>Importación (%)</th>
<th>Costo Componente</th>
<th>Precio Venta</th>
<th>COSTO IMPORTACION</th>
<th>No. Proveedores Extranjeros</th>
<th>País(es) del Proveedor</th>
<th>¿Existen proveedor(es) que fabrique en México?</th>
<th>¿Cuántos proveedores nacionales tiene?</th>
</tr>
</thead>
</table>

MOTIVOS DE IMPORTACIÓN

<table>
<thead>
<tr>
<th>Precio</th>
<th>Calidad</th>
<th>Tiempos de Entrega</th>
<th>Estrategia de suministro global</th>
<th>Mercado limitado para invertir</th>
<th>Certificación</th>
<th>Otras:</th>
</tr>
</thead>
</table>

PRODUCCION, VENTAS Y EXPORTACIONES

2010 - 2015

<table>
<thead>
<tr>
<th>Capacidad Instalada Anual (Unidades)</th>
<th>Capacidad Utilizada Anual (Unidades)</th>
<th>Tasa de Utilización</th>
<th>Producción Anual (Unidades)</th>
<th>Ventas Anuales (Unidades)</th>
<th>Exportaciones %</th>
<th>País de Destino</th>
<th>Ventas Directas PEMEX %</th>
<th>Ventas Indirectas PEMEX %</th>
</tr>
</thead>
</table>

PRIORIDADES EN LA FABRICACION DE BOMBAS

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>Procesos</th>
<th>Financiamiento</th>
<th>Capacitación</th>
<th>Proveedores</th>
<th>Materias primas</th>
<th>Normatividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioridad</td>
<td>Prioridad</td>
<td>Prioridad</td>
<td>Prioridad</td>
<td>Prioridad</td>
<td>Prioridad</td>
<td>Prioridad</td>
</tr>
</tbody>
</table>
4) Estrategia Empresarial

<table>
<thead>
<tr>
<th>4.1 Planeación Estratégica</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 ¿Conoce el ritmo de crecimiento anual de sus ingresos?</td>
</tr>
<tr>
<td>4.1.2 ¿Cuál sería su ritmo de crecimiento en 2010 - 2013?</td>
</tr>
<tr>
<td>4.1.3 ¿Tiene implementados procesos de planeación estratégica?</td>
</tr>
<tr>
<td>4.1.4 ¿Cuáles de los siguientes planes tiene implementados?</td>
</tr>
<tr>
<td>4.1.5 ¿Mencione sus 3 principales estrategias de crecimiento en el mediano plazo?</td>
</tr>
<tr>
<td>4.1.6 ¿Cuáles serían sus 3 principales fortalezas para incrementar ventas?</td>
</tr>
<tr>
<td>4.1.7 ¿Qué posición de liderazgo considera tener en la industria nacional de bombas?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.2 Ventas PEMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 ¿Su empresa es proveedora de bombas para PEMEX?</td>
</tr>
<tr>
<td>4.2.2 ¿Qué nivel de importancia tiene PEMEX en su estrategia de ventas?</td>
</tr>
<tr>
<td>4.2.3 ¿Cuáles serían sus 3 principales estrategias para aumentar sus ventas con PEMEX?</td>
</tr>
<tr>
<td>4.2.4 Actualmente, ¿Ha intentado vender a PEMEX?</td>
</tr>
<tr>
<td>4.2.5 ¿A qué situaciones se ha enfrentado?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.3 Propiedad intelectual</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 ¿Desarrolla tecnología propia?</td>
</tr>
<tr>
<td>4.3.2 ¿Cuenta con una estrategia de protección de la propiedad intelectual e industrial?</td>
</tr>
<tr>
<td>4.3.3 ¿Cuenta con registros de patentes?</td>
</tr>
<tr>
<td>4.3.4 Actualmente, ¿Cuáles serían sus 3 principales objetivos de vinculación?</td>
</tr>
<tr>
<td>4.3.5 ¿Por qué no las ha registrado?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4 Investigación y Desarrollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1 ¿Cuáles serían sus 3 principales objetivos de vinculación?</td>
</tr>
<tr>
<td>4.4.2 ¿Cómo calificaría su nivel de investigación y desarrollo tecnológico?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.5 Vinculación</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1 ¿Tiene vinculación con algún Centro de Investigación?</td>
</tr>
<tr>
<td>4.5.2 ¿Cuáles serían sus principales objetivos de vinculación?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.6 Tendencias Tecnológicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1 ¿Conoce las principales tendencias tecnológicas en fabricación de bombas?</td>
</tr>
<tr>
<td>4.6.2 ¿Podría mencionar alguna tendencia tecnológica o tecnología?</td>
</tr>
<tr>
<td>4.6.3 ¿Podrías adaptar o desarrollar estas tecnologías?</td>
</tr>
<tr>
<td>4.6.4 ¿Qué faltaría para poder desarrollarla o adaptarla?</td>
</tr>
</tbody>
</table>
5) Financiamiento

5.1 Fuentes de Financiamiento

- 5.1.1 ¿Ha recibido algún tipo de financiamiento?
- 5.1.2 ¿Quién le asignó el financiamiento?
- 5.1.3 ¿Para qué se utilizó?
- 5.1.4 ¿De qué forma le ayudó el financiamiento obtenido?
- 5.1.5 Actualmente, ¿Cuál sería su principal fuente de financiamiento?
- 5.1.6 ¿Estaría interesado en recibir financiamiento?
- 5.1.7 ¿Cuál sería el destino del financiamiento?

5.2 Programas de Apoyos

- 5.2.1 ¿Conoce programas de apoyo gubernamentales?
- 5.2.2 En su caso, ¿A qué programa gubernamental le gustaría solicitar apoyo?
- 5.2.3 A qué situaciones se ha enfrentado
Anexo 5. Selección de Empresas Participantes

El presente Anexo tiene como objetivo presentar el mecanismo utilizado para la selección de las empresas fabricantes de bombas participantes en el estudio sectorial.

Con la finalidad de alcanzar una mayor participación en el estudio sectorial se analizaron tres bases de datos para establecer el grupo de empresas:

- Empresas de la Rama de Bombas de la Cámara Nacional de la Industria de Transformación (CANACINTRA)
- Empresas proveedoras de PEMEX de Organismos Subsidiarios (OS) y del Directorio Institucional de Proveedores y Contratistas (DIPC)
- Empresas de la clase de actividad 333910, Fabricación de Bombas y Sistemas de Bombeo, del Directorio Estadístico Nacional de Unidades Económicas (DENUE) del Instituto Nacional de Estadística, Geografía e Informática (INEGI)

Es importante señalar que las tres bases de datos utilizadas para la definición del grupo de empresas participantes, no especifican si las empresas se dedican a la fabricación de bombas para la industria petrolera, y específicamente los tipos considerados en el estudio sectorial.

Por lo anterior, se aplicó una metodología de análisis a fin de delimitar el grupo de participantes a empresas nacionales fabricantes de bombas, específicamente de los tipos centrífugas, reciproantes y rotatorias; excluyendo del estudio sectorial a las siguientes empresas:

- Empresas fabricantes internacionales
- Empresas dedicadas exclusivamente a la distribución y/o comercialización de bombas
- Empresas fabricantes de otros tipos de bombas diferentes a las anteriores y de usos distintos a la industria petrolera
- Empresas fabricantes de componentes y piezas para bombas
- Empresas ensambladoras de bombas con insumos de importación

Para el desarrollo de las entrevistas que se aplicarán para la ejecución del estudio sectorial, se integraron dos grupos de empresas:

- Grupo 1 (G1) integrado por las empresas fabricantes de bombas identificadas en las bases de datos de CANACINTRA y PEMEX, a las que se aplicará una entrevista presencial
- Grupo 2 (G2) conformado por las empresas fabricantes identificadas en la base de datos de INEGI a las que se aplicarán entrevistas telefónicas
Metodología de Análisis

Las tres bases de datos suman un total de 379 registros de empresas (Tabla A.5), mismas que como se comentó en párrafos anteriores, no especifican si las empresas se dedican a la fabricación de bombas, podían estar duplicadas o dedicarse a otras actividades como distribución y/o comercialización de bombas, fabricación y ensamble de componentes, o fabricar otros tipos de bombas.

<table>
<thead>
<tr>
<th>Base de Datos</th>
<th>Registros</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANACINTRA</td>
<td>34</td>
</tr>
<tr>
<td>PEMEX</td>
<td>188</td>
</tr>
<tr>
<td>INEGI</td>
<td>157</td>
</tr>
<tr>
<td>Totales</td>
<td>379</td>
</tr>
</tbody>
</table>

Base de Datos – CANACINTRA

Se realizó una depuración de la base de datos de CANACINTRA con la participación de la Presidencia del Sector de Bienes de Capital de la CANACINTRA, considerando los siguientes criterios:

- Eliminar a las empresas dedicadas exclusivamente a la distribución y/o comercialización de bombas
- Eliminar a las empresas dedicadas a la fabricación de componentes o piezas para bombas
- Eliminar a las empresas dedicadas al ensamble de bombas con componentes de importación
- Realizar llamadas telefónicas para validar directamente que las empresas se dediquen a la fabricación nacional de bombas

En lo relativo a la base de datos de CANACINTRA conformada por 34 empresas, se eliminaron 9 empresas dedicadas a la fabricación de componentes, distribución o ensamble de bombas, así como 2 empresas de las que no se lograron obtener datos de contacto (Tabla A.6).

Por lo anterior, se realizaron 23 llamadas telefónicas a empresas de CANACINTRA, sin obtener respuesta en 2 registros de empresas. De las 21 llamadas telefónicas realizadas 17 empresas fabricantes señalaron su interés de participar en el estudio sectorial. Asimismo, como resultado de las llamadas telefónicas se descartaron 2 empresas dedicadas a la fabricación de componentes y la producción de otro tipo de bombas, así como a 2 empresas que no se lograron contactar vía telefónica.
Tabla A.6 Depuración de Base de Datos de CANACINTRA

<table>
<thead>
<tr>
<th>Llamadas Telefónicas Realizadas</th>
<th>Empresa Participante</th>
<th>Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANACINTRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>No Contestó</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Componentes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Distribuidor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ensamblador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fabricante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>No Disponible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Otras Bombas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Repetidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Totales</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

Fabricante: Empresa fabricante del tipo de bomba considerada en el estudio sectorial.
Componentes: Empresa fabricante de componentes o piezas de bombas.
Ensamblador: Empresa dedicada exclusivamente al ensamble de componentes y piezas importados para la fabricación de bombas.
Distribuidor: Empresa dedicada exclusivamente a la distribución y/o comercialización de bombas importadas o nacionales.
Otras Bombas: Empresa fabricante de otros tipos de bombas no consideradas en el estudio sectorial.
No Disponible (ND): Empresa que no se logró contactar vía telefónica por 1) Falta de datos de contacto, o 2) Sin respuesta en la llamada telefónica.

Base de Datos DIPC – PEMEX

Se realizó la depuración de la base de datos de la DIPC de PEMEX considerando los siguientes criterios:

- Eliminar los registros duplicados por nombre comercial o razón social
- Búsqueda de la página de Internet de la empresa para obtener sus datos de contacto, toda vez que no se incluían en la base de datos
- Revisión de la información de las páginas de Internet para determinar si correspondían a empresas nacionales o internacionales
- Revisión de las páginas de Internet de las empresas internacionales para identificar si cuentan con socios fabricantes de bombas en México
- Recopilación de los datos de contacto de las empresas nacionales, y en su caso socios en México
- Realizar llamadas telefónicas para validar directamente que las empresas nacionales se dediquen a la fabricación de bombas
En lo que respecta a los 56 registros de la base de datos del DIPC, se identificaron 46 empresas internacionales y 5 empresas sin información en Internet, a las que no se les realizaron llamadas telefónicas.

Asimismo, se identificaron 5 empresas nacionales a las que se les realizó llamadas telefónicas, identificándose como empresas distribuidoras de bombas, por lo que no se consideraron en el estudio sectorial (Tabla A.7).

<table>
<thead>
<tr>
<th>Tabla A.7 Primera Depuración de Bases de Datos de DIPC PEMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llamadas Teléfonoicas Realizadas</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>DIPC – PEMEX</td>
</tr>
<tr>
<td>Fabricante Internacional</td>
</tr>
<tr>
<td>Distribuidor</td>
</tr>
<tr>
<td>No Disponible</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>

Fabricante Internacional: Empresa fabricante internacional de bombas.
Distribuidor: Empresa dedicada exclusivamente a la distribución y/o comercialización de bombas importadas o nacionales.
No Disponible (ND): No se encontró su página de Internet.

En lo que respecta a las empresas socias en México identificadas en las páginas de Internet de los fabricantes internacionales, se obtuvieron 6 empresas nacionales asociadas, a las que se les realizaron llamadas telefónicas, detectándose una empresa fabricante nacional interesada en participar, y se descartaron 5 empresas al tratarse de empresas dedicadas exclusivamente a la distribución de bombas (Tabla A.8).

<table>
<thead>
<tr>
<th>Tabla A.8 Segunda Depuración de Bases de Datos de DIPC PEMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llamadas Teléfonoicas Realizadas</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>DIPC - PEMEX</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
<tr>
<td>Distribuidor</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>

Fabricante Internacional: Empresa fabricante internacional de bombas.
Distribuidor: Empresa dedicada exclusivamente a la distribución y/o comercialización de bombas importadas o nacionales.
Base de Datos OS – PEMEX

Se realizó la depuración de la base de datos de los OS de PEMEX considerando los siguientes criterios:

- Eliminación de los registros duplicados por nombre comercial o razón social.
- Búsqueda de la página de Internet de la empresa para obtener sus datos de contacto, toda vez que no se incluyan en la base de datos.
- Revisión de la información de las páginas de Internet para determinar si correspondían a empresas nacionales o internacionales.
- Revisión de las páginas de Internet de las empresas internacionales para identificar si cuentan con socios fabricantes de bombas en México.
- Recopilación de los datos de contacto de las empresas nacionales, y en su caso socios en México.
- Realizar llamadas telefónicas para validar directamente que las empresas nacionales se dediquen a la fabricación de bombas.

En lo relativo a los 131 registros de empresas de la base de datos de OS, se identificaron 90 empresas internacionales y 3 empresas de las cuales no se encontraron sus páginas de Internet. Respecto a las 38 empresas restantes, se identificaron 19 registros repetidos, por lo que se realizaron 19 llamadas telefónicas, identificándose 10 empresas distribuidoras y un fabricante de otro tipo de bombas, así como una empresa sin respuesta en la llamada telefónica. Asimismo, se contactaron a 7 empresas fabricantes, de las cuales 6 señalaron su interés por participar en el estudio sectorial (Tabla A.9).

<table>
<thead>
<tr>
<th>Tabla A.9. Primera Depuración Base de Datos OS – PEMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llamadas Telefónicas Realizadas</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>OS – PEMEX</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
<tr>
<td>Distribuidor</td>
</tr>
<tr>
<td>Ensamblador</td>
</tr>
<tr>
<td>Fabricante Internacional</td>
</tr>
<tr>
<td>Otras Bombas</td>
</tr>
<tr>
<td>No Disponible</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>

En las páginas de Internet de las empresas internacionales, se identificaron 41 empresas socias ubicadas en México. En total se realizaron 36 llamadas telefónicas, descartándose 6 empresas que no se lograron contactar vía telefónica y 5 empresas repetidas en las bases de datos. En las 30 llamadas telefónicas se identificaron 26 empresas distribuidoras, 2 empresas fabricantes de otras bombas y 2 empresas fabricantes, mismas que señalaron su interés de participar en el estudio sectorial (Tabla A.10).

<table>
<thead>
<tr>
<th>Tabla A.10 Segunda Depuración Base de Datos OS – PEMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llamadas Telefónicas</td>
</tr>
<tr>
<td>OS</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
<tr>
<td>Distribuidor</td>
</tr>
<tr>
<td>Ensamblador</td>
</tr>
<tr>
<td>Otras Bombas</td>
</tr>
<tr>
<td>No Disponible</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>

Fabricante: Empresa fabricante del tipo de bomba considerada en el estudio sectorial.
Distribuidor: Empresa dedicada exclusivamente a la distribución y/o comercialización de bombas importadas o nacionales.
Otras Bombas: Empresa fabricante de otros tipos de bombas no consideradas en el estudio sectorial.
Repetido: Registros ya incluidos en la base de datos de CANACINTRA y PEMEX.
No Disponible (ND): Empresa que no se logró contactar vía telefónica, sin respuesta en la llamada telefónica.

Base de Datos – INEGI

Se realizó una depuración de la base de datos de INEGI, considerando los siguientes criterios de análisis:
- Eliminación de los registros duplicados por nombre comercial o razón social.
- Eliminación de los registros de empresas de hasta 10 empleados (Estratos 1 y 2 del INEGI).
- Eliminación de los registros repetidos con la base de datos de CANACINTRA y PEMEX.
- Realizar llamadas telefónicas para validar directamente que las empresas se dediquen a la fabricación de bombas.

La base de datos de INEGI cuenta con 157 registros, de los cuales se eliminaron 34 registros duplicados en la misma base de datos por su razón social. Posteriormente, se eliminaron 52 registros de empresas con hasta 10 empleos, clasificados en el Estrato 1 (0 a 5 empleos) y Estrato 2 (6 a 10 empleos), quedando un total de 72 registros por identificar si son empresas fabricantes de bombas (Tabla A.11).
De los 72 registros, se eliminaron 17 registros repetidos en las base de datos de CANACINTRA y PEMEX, lo que arrojó un total de 55 registros. Para validar si se trataban de empresas fabricantes de bombas, se realizaron 55 llamadas telefónicas, identificándose a 14 empresas fabricantes de bombas, mismo número que señaló su interés por participar en el estudio sectorial.

<table>
<thead>
<tr>
<th>Tabla A.11 Depuración de Base de Datos de INEGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llamadas Telefónicas Realizadas</td>
</tr>
<tr>
<td>INEGI</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
<tr>
<td>Distribuidor</td>
</tr>
<tr>
<td>Ensamblador</td>
</tr>
<tr>
<td>Componentes</td>
</tr>
<tr>
<td>Otras Bombas</td>
</tr>
<tr>
<td>No Disponible</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>

Fabricante: Empresa fabricante del tipo de bomba considerada en el estudio sectorial.
Distribuidor: Empresa dedicada exclusivamente a la distribución y/o comercialización de bombas importadas o nacionales.
Ensamblador: Empresa dedicada exclusivamente al ensamble de componentes y piezas importados para la fabricación de bombas.
Componentes: Empresa fabricante de componentes o piezas de bombas.
Otras Bombas: Empresa fabricante de otros tipos de bombas no consideradas en el estudio sectorial.
Repetidos: Registros ya incluidos en la base de datos de CANACINTRA y PEMEX.
No Disponible (ND): Empresa que no se logró contactar vía telefónica por 1) Por falta de datos de contacto, o 2) Por no tener respuesta en la llamada telefónica.

Los resultados finales de la depuración de las tres bases de datos conforme a la metodología de análisis señalan un grupo final de 39 empresas participantes fabricantes del tipo de bombas consideradas en el estudio sectorial (Tabla A.12).

<table>
<thead>
<tr>
<th>Tabla A.12 Muestra de Empresas Participantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base de Datos</td>
</tr>
<tr>
<td>CANACINTRA</td>
</tr>
<tr>
<td>INEGI</td>
</tr>
<tr>
<td>PEMEX</td>
</tr>
</tbody>
</table>
Distribución Geográfica Original de la Muestra

- El 44% de las empresas participantes se ubican en la Zona Metropolitana del Valle de México.

Las empresas participantes se distribuyen principalmente en una franja que incluye la región Oriente (Hidalgo, Puebla y Veracruz), región Centro (Distrito Federal, Estado de México y Morelos), región Centro – norte (Guanajuato y Querétaro), región Occidente (Jalisco), así como en la región Norte (Chihuahua) y Noreste (Nuevo León y Coahuila).

Ajuste en la Muestra de Empresas Participantes

Una vez definida la programación para la aplicación de entrevistas a la muestra original de 39 empresas participantes, se realizaron llamadas telefónicas para la confirmación de los horarios y se remitió un resumen de la información requerida por tipo de bomba demandada por PEMEX, recibiendo notificaciones de empresas donde declinaban su participación, ya sea porque son fabricantes de otros tipos de bombas que no forman parte de las bombas objeto del estudio, son empresas ensambladores o manifestaron su falta de interés por participar en el estudio (Tabla A.13).

<table>
<thead>
<tr>
<th>Tabla A.13 Ajuste en la Muestra de Empresas Participantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
<tr>
<td>Otras Bombas</td>
</tr>
<tr>
<td>Ensamblador</td>
</tr>
<tr>
<td>Sin Interés</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Fabricante: Empresa fabricante del tipo de bomba considerada en el estudio sectorial.
Ensamblador: Empresa dedicada exclusivamente al ensamblaje de componentes y piezas importados para la fabricación de bombas.
Otras Bombas: Empresa fabricante de otros tipos de bombas no considerados en el estudio sectorial.
Repetidos: Registros ya incluidos en la base de datos de CANACINTRA y PEMEX.
Sin Interés: Empresas que manifestaron su falta de interés por participar en el estudio sectorial.

<table>
<thead>
<tr>
<th>Tabla A.14 Muestra Final de Empresas Participantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base de Datos</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>CANACINTRA</td>
</tr>
<tr>
<td>INEGI</td>
</tr>
<tr>
<td>PEMEX</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con los resultados de la depuración de empresas participantes.
Tabla A.15 Distribución Geográfica Final de Empresas Participantes

<table>
<thead>
<tr>
<th>Entidad</th>
<th>No. Empresas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distrito Federal</td>
<td>8</td>
</tr>
<tr>
<td>Estado de México</td>
<td>3</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>2</td>
</tr>
<tr>
<td>Jalisco</td>
<td>2</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>1</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>1</td>
</tr>
<tr>
<td>Puebla</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con los resultados de la depuración de empresas participantes.
Anexo 6. Formato para Entrega de Reportes Individuales

Lugar y fecha

TITULO, NOMBRE
EMPRESA
CARGO

Como es de su conocimiento, Petróleos Mexicanos (PEMEX) en coordinación con la Cámara Nacional de la Industria de Transformación (CANACINTRA) desarrollaron el Estudio Sectorial: Bombas Utilizadas en la Industria Petrolera.

El estudio sectorial se dirigió a analizar la oferta de la industria nacional de bombas para atender la demanda por tipo y material de bombas de PEMEX y sus organismos subsidiarios, identificar el grado de integración nacional (GIN), así como generar estrategias que permitan incrementar la producción y GIN de la industria nacional, entre otras aspectos.

Derivado de lo anterior, anexo a la presente un análisis comparativo de su empresa respecto a la industria agregada, con el detalle de las acciones que se proponen implementar para incrementar su producción y GIN, así como otros factores productivos requeridos como equipamiento, proveeduría, tecnología, capacitación y adopción de normas especializadas, entre otros.

Reciba un cordial saludo

TITULO, NOMBRE
CARGO